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Mitigation guidelines (WP12)

Objectives
• Aid exploitation of Spacestorm research
• Practical guidance on extreme events in context of 

current design practice (for GEO and MEO)
• Determine/quantify the feasibility of mitigation if 

possible
• Advise on mitigation options



Spacestorm Overview
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Experience of severe storms to date

• Satellites have specifications which 
account for ‘severe’ space weather
 many space weather failures do not occur 

in the most severe events

• Overall performance of global fleet is 
actually good
 even in largest of space weather events 

there have been only a few failures
 sign of successful engineering
 but reliable anomaly data is hard to obtain
 severe events to date appear to cause 

‘stress’ 
 conservative design practices and hidden 

safety margins

• An extreme electron event would be 
outside of current engineering 
specifications 
 leads to risk but not necessarily instant 

failures

Anomalies per month in 2004 (Sources: Atrium 
insurance database and GOES/NOAA SEM)



Perspectives from stakeholders

• Owners/operators
 Aware of ‘Carrington events’ but uncertain of implications
 Commercial systems
 Normally accept manufacturers existing products on basis of track record
 Insurers carry the (financial) risk for extreme events

 Critical systems (navigation, security) can impose bespoke specifications
o Natural environment specifications still ‘severe’ rather than ‘extreme’
o Some unusual specifications (e.g. military) 

• Insurers
 Watching brief on extreme space events at present – aim to quantify risk
 Concern about multiple claims from one event - update the ‘realistic disaster 

scenario’
• Manufacturers

• Point to a long track record of success
• Any further protection depends what is specified by customers
• Need to understand the engineering implications and feasibility
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Detailed extreme 
environment definition 

Carry out survivability 
assessment of existing 
design: determine level of 
risk. 

Existing ‘severe case’ 
environment and 
system protection  

No risk: no action 
required 

Low/moderate 
risk but 
acceptable: no 
change in system 

 

Unacceptable risk: impose 
extreme event design 
specification and upgrade 
protection 

Operational mitigation*: alerts, forecasts, 
contingency procedures, training, exercises.  

Monitor actual environment and system 
behaviour (anomaly tracking). 

Insurance to mitigate 
financial risk* 

Event e.g. 1 
in 100 years 

Behaviour e.g. operate 
through  

Create extreme event 
policy: define extreme 
event (e.g. 1 in 100 year) 
and system behaviour 

 

On-going risk 
assessment and 

updates 

*Operational procedures and insurance should also address environments more extreme than those 
which the system is formally required to survive. e.g.to enable best chance of recovery. 

To proceed the 
owner/customer 
needs a policy 
for extreme 
events.



Engineering effects of extreme electron 
events

• Internal charging
• Ionising dose
• Solar cell damage

• Surface charging – low energy (keV) electrons and protons

Energetic (MeV) electrons



Internal charging and mitigation (1)

• Affects dielectrics / isolated 
metals all around the spacecraft

• Engineering responsibility is not 
always clearly defined

• Testing is difficult
 methods are poorly-defined 
 few test facilities

• Materials (conductivity) 
parameters poorly known

• NASA and ECSS define ‘severe’ 
environments for engineering
 also define a charging current limit 

(0.1pAcm-2 daily average) for ‘safety’

High energy electrons from space environment

Dielectric 
or 

isolated 
conductor

Satellite 
shielding



Internal charging mitigation (2)

• 1 in 150 year event ‘Spacestorm’ 
event in GEO: how much extra 
shielding is needed?

• Assume spacecraft type has 
excellent track record with no 
anomalies under standard 
severe conditions

• Simple approach is to apply 
shielding to restore internal 
charging currents back to 
‘severe’ levels
 If applied at satellite body level need 

~1.6mm Al extra
 Requires ~80kg of mass for a medium 

GEO (dry mass 1200 to 1500 kg)
 Upper estimate

 Not an likely approach

GEO 
case



Internal charging mitigation (3)
• In practice the harness is not 

usually specifically shielded (just 
via outer panels ~0.5mm Al eq).

• Acceptable if:
 dielectrics are thin (true for most cables)
 equipment boxes are robust to ESD 

events (and tested)

• Thus we just add extra shielding at 
box level
 We assume initially 1.5mm Al thick 

boxes + 0.5mm Al outer structure
 But no need to increase beyond 

3mm total (0.1pAcm-2 ECSS/NASA 
limit)
 Thus need extra 1mm Al on boxes
 Extra ~50kg shielding required 

(upper limit estimate)
 For Galileo-type spacecraft (700kg dry 

mass) we need ~20kg extra mass.

Box thickness 
+ spacecraft 
wall

GEO 
case

3mm Al total 
(0.1pA cm-2

limit)



Electric field modelling and testing
• Reduce the shielding 

requirement by 
modelling internal 
electric fields
 MCICT, DICTAT, 

ELSHIELD, NUMIT, 
CBIESD
 Need materials 

parameters
 Specific extreme event 

modelling (time 
evolution)
 Testing 
 Test facilities

o ONERA: GEODUR 
and SIRENE –
accelerated and low 
flux

o SSC: REEF – realistic 
flux, long term tests

REEF at 
SSC



Ionising dose mitigation (1)

• 15 year GEO mission
 One 1 in 150 year event 

(extreme flux lasts one week)
• Most electronic component 

tolerances lie in a narrow range
 Soft components will be heavily 

shielded
• Additional 8 years of dose 
 ~50% of GEO spacecraft would 

be pushed to beyond their 
radiation design lifetime
 Conservative designs may 

prevent sudden failures, but 
should prepare to replace them

• How much additional shielding 
is required to mitigate?

Rad tolerant components

Soft components

15 year GEO mission

Radius of Al 
sphere



Ionising dose mitigation (2)

• For rad-tolerant components 
need <1mm Al (spherical)
 Applied at box level
 This is less than that required 

to address internal charging 
(thus no further mass impact)

• Note for ‘soft’ components the 
additional shielding is 
potentially much greater

• Due to bremsstrahlung limit
• Need detailed study for each 

case
• However there should be only 

very few situations like this

15 year GEO mission

Radius of Al 
sphere



Solar array damage mitigation

• GaAs cells, 150 micron cover glass
• GEO, 6kW BOL array 
• Electron degradation is dominant 
• Average electron environment causes 

17% degradation over 15 years
• 1 in 150 year electron event gives a 

further 5% degradation (22% total)
• To mitigate need to increase cover 

glass thickness to 300microns: ~10kg
extra mass

• Can also oversize the array to 
compensate

For MEO Galileo size spacecraft (2.5 kW 
BOL) need extra 5kg.



Surface charging mitigation
• Perform surface charging analysis
 Use SPIS or NASCAP2K
 Select environment: ECSS is a severe case 

for GEO and MEO 

 What if 23 July 2012 CME had impacted 
Earth?
 Very high levels of charging
 Very preliminary result: continue to use 

ECSS at present

• Apply normal ECSS/NASA rules for 
surface charging alleviation 
 Avoid exposure of dielectrics to plasma
 Use conductive/grounded surfaces (e.g. 

on blankets)
 Ensure ‘secondary arcs’ cannot occur 
 Consider passive emitters (WP13)

• Minimal mass impact from surface 
charging alleviation measures

Above: ONERA example 
spacecraft charging analysis.

Below: results for sunlit cases



Operational mitigation
• Often dozens of satellites are controlled from 

one centre
 anomalies on multiple spacecraft could cause 

excessive workload

• Discussion with operators shows that there are
mitigations which usefully reduce risk [e.g. 
Haggerty et al, ESWW, 2016]

 re-schedule operations 
 re-configure staffing and equipment 
 ensure recovery procedures are ready and 

rehearsed

• Alerts and forecasts are thus important – need 
to develop good relationship with provider: e.g. 
NOAA, Met Office
 Spacestorm has developed new risk indicators 

which relate closely to engineering threat 

• Install (simple) on-board environment 
monitoring equipment
 to help diagnose anomalies, monitor lifetime and 

validate survivability



Summary of mitigation guidelines
• Owner should have an extreme event policy and then assess risks, 

implications and remedies
• 1 in 150 year energetic electron event would be serious
 Internal charging and dose are major concerns
 Anomalies and significant loss of lifespan should be expected
 Inherently conservative designs may provide a buffer

• Engineering mitigation is feasible (if required)
 Shielding requirement is moderate

 ~60kg additional mass for a 1500kg dry mass GEO spacecraft
 ~25kg additional mass for a 700kg Galileo-type spacecraft

 To minimise additional mass do more internal charging/dose modelling
 Clearly some re-design and re-qualification costs

• Operational mitigation is valuable
 Space weather services for alerts and forecasts
 Install simple on-board environment monitoring equipment
 Carry out training and rehearsals
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