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Introduction

• ~ 50 % of the space system anomalies related to space environments due to 
charging (internal or surface)

• Surface charging related to low energy electrons and ions (< 100 keV) that 
deposit their charge on covering materials 

• Plasma – Spacecraft interactions prevail (collection and emission)
• ‘Absolute charging’ defines potential difference bw SC and plasma
• ‘Differential charging’ defines the voltage between adjacent materials
• Large absolute charging may induce large differential charging that may 

induce electrostatic discharges (ESDs)

• Objectives
• Define ‘severe’ and ‘extreme’ environments leading to ESD risks
• Propose updates of mitigation guidelines wrt to current practices

• Outline
• Charging assessment by numerical simulation
• ‘Severe’ environments
• ‘Extreme’ environments
• Mitigating surface charging



Charging assessment by numerical simulation

• Spacecraft Plasma Interaction Software: open source, www.spis.org
• 3D Telecom spacecraft model

• Material properties from literature and from ONERA measurements (see Radiation 
Experiments and New Materials)

• ESD risk indicator
• Inverted Potential Gradient (IPG): negative conductor nearby a less negative 

insulator, known to generate primary ESDs
• Representative of major risk on solar arrays: secondary arcing
• Identify ‘severe’ and ‘extreme’ environments  SPACESTORM project 

in synergy with CNES R&D
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‘Severe’ environments from LANL spacecraft

• ONERA/CNES R&D activities : analysing 15 years of LANL data at GEO
• e-/p+ : 100 eV up to 4-6 MeV
• Three criteria used to classify 15 minutes average electron fluxes

• Largest fluxes above 10 keV ………………………………………….April 5th, 2004
• Combined large flux above 200 keV and low flux below 50 keV ….May 29th, 2003
• Combined low flux above 200 keV and large flux below 50 keV ….Sept 3rd, 1997

• One criterion used as a function of spacecraft potential
• Longest period of time (tens of minutes) with potential exc. -5 kV…March 13th, 1997

• 400 hundreds events identified in total (probably some others to come)



‘Severe’ environments from LANL spacecraft

• The 400 LANL events have been consolidated by additional information 
• Good correlation with NOAA/POES 1% and 0.1% exceedance flux 

levels (see ‘1 in XX Year Events’ )
• Solar wind and geomagnetic indices

~50% storm, ~50% isolated sub-storm

 LANL Data base is robust

• ‘Low Energy Electrons’ IMPTAM model used to
• Compare 4 LANL worst events at GEO : good agreement on electrons
• Unique tool to predict radiation belts < ~ 200 keV where few 

measurements are available
• Focus on GNSS orbits L = 4.6



‘Severe’ environments from LANL spacecraft

• Example of event on April 5th, 2004
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‘Severe’ environments from LANL spacecraft

• Example of event on April 5th, 2004
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‘Severe’ environments from LANL spacecraft

• Example of Telecom spacecraft charging under the env. of April 5th, 2004

at Geo and at Sun : IPG = +220 V  

at Geo and in eclipse : IPG = +980 V  

at Meo and at Sun : IPG = +2800 V  

Simulations show increased risks
• at MEO
• in eclipse
• at MEO + eclipse



Recommendations on ‘Severe’ environments from 
standards

• ECSS and NASA standards worst-cases are very conservative at GEO
• At GEO, we recommend to use 

• ECSS-E-ST-10-04C: double maxwellian fit of SCATHA April 24th, 1979 
event, which overestimated the actual data

• NASA-HDBK-4002A: 90th percentile GEO
• At GEO, we suggest to use 

• LANL events: April 5th, 2004; May 29, 2003; Bastille day; Halloween…
• Tri-maxwellian fit of SCATHA April 24th, 1979

• At MEO, we recommend to use ECSS worst-case

• Worst charging situations combine severe environments above and eclipse
• Recommend charging assessment at eclipse exit
• Combined effect of cold materials and return of photoemission process



Nowcast surface charging indicator

• Additional statistical analysis of the 15 years of LANL data also showed a 
good agreement between spacecraft charging and 10-50 keV electron fluxes

• Used to define risks levels at GEO (See Risk Indicators Website)
• e- Flux10-50keV > 108 cm-2.s-1.sr-1: High Risk Level
• e- Flux10-50keV > 4×107 cm-2.s-1.sr-1: Significant Risk Level
• e- Flux10-50keV > 1.5×107 cm-2.s-1.sr-1: Moderate Risk Level
• Otherwise: Low Risk Level



‘Extreme’ environments
• July 23-24, 2012 extreme event

• Extremely fast CME that missed the Earth
• IMPTAM simulation to assess ‘extreme’ magnetosphere fluxes
• Initial phase: Maximal electron flux (<100 keV) would be about one order of 

magnitude larger than LANL, NASA and ECSS worst case… during minutes
• Main phase/Recovery phase: electron loss due to stretched B-field lines; probably 

no additional surface charging

• IPG of +2600 V at GEO and +3200 V at MEO within 20 seconds: huge ESD risk
• Recommend to use July 23-24, 2012 for surface charging in ‘extreme’ conditions
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Mitigating the risk

• ECSS and NASA guidelines to avoid ESD and detrimental effects (in brief)
• Bound/ground surface metallic parts
• For non-conducting surfaces, if feasible, use thin conductive covering 

layers such as ITO
• Protect electronic equipment against EMC induced by external ESD
• Protect power systems against secondary arcing, especially solar arrays

• Alleviate negative charging : Counterbalance electron collection by electron 
emission using field-effect emission devices

Field-effect electron emission
 Reduce negative charging



Passive electron emitter

1. Propose a general design

2. Build and test prototypes

3. Assess efficieny in spacecraft charging environment
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Samples
• Anode

• Dielectric material charged passively and freely by environment
• Better if covered with appropriate thin layer

• Cathode
• Nano technology material
• Increases the microscopic electric field and field-effect emission
• Active area ~ 0.1 cm2.
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Test facility
• Testing in a new ONERA vacuum chamber called PHEDRE

• 1e-7 mbar
• 55*60 cm
• Heating/Cooling support
• Charging by VUV and/or electron beam
• Complete DAQ system (X-Y surface potential, ESD monitor, electron 

emission, etc)



Passive emission assessment

• Current-voltage assessment
• High impedance circuit (10 MΩ): -14 ± 1 µA at V_bias = -500 V
• Low impedance circuit (1 MΩ) : -29 ± 5 µA at V_bias = -500 V
• Saturation around -30 µA

• Field-effect current of 10-30 µA (103 times the charging photocurrent !)
• No ESD was triggered within several hours of operation
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Spacecraft charging assessment

• Assessment of efficiency at spacecraft level with SPIS

Solar cell cover glasses (CMX)

Meshed wire antennae
reflectors (Gold)

Rear side (black kapton)

North & South 
faces (OSR)

North & South 
faces (ITO)

Antenna
(Conductive Paint)

Top & Side & Bottom
(black kapton)

Passive emitter patch



Spacecraft charging assessment

• Emitters to be located close to the extremity of solar arrays (from ESA/ONERA 
activity on Passive electron emission Co 4000105753/12/NL/KML)

• Emitted current as a function of local IVG, from experimental results

• ECSS worst case environment at Sun 
• Frame : - 6 000 V
• IVG : + 3 000 V

• At Sun with 1 emitter (estimated area ~1 cm2)
• Frame : - 5 500 V
• IVG : + 2 200 V

• At Sun with 10 emitters (estimated area ~10 cm2)
• Frame :    - 950 V
• IVG : + 500 V

Passive electron emission



Summary - Contribution to European Space Industry

• ‘Severe’ environments to be used within ECSS WG on E-HB-20-06A
• For a spacecraft surface charging estimation to be conservative at 

GEO, it is recommended to use ECSS or NASA 90th worst-case; with 
possibility to use LANL worst-cases and ECSS suggested adaptations

• To be conservative at MEO, it is recommended to use ECSS worst 
case

• Consider eclipse exit as a worst scenario 
• ‘Extreme’ conditions such as the event on July 23, 2012 that missed the 

Earth would increase the ESD risk by a factor of five wrt ECSS worst-
case, both at GEO and at MEO

• Additional mitigation techniques need to be implemented 
• This project showed the feasibility to use field-effect : important inputs 

to ESA plans to manufacture passive electron emitters
• Further efforts are required to manufacture testable and qualifiable

prototypes (need to improve cathode material and anode mounting)
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