

Determination of the 1 in 100 year space weather event in medium Earth orbit

N. P. Meredith¹, R. B. Horne¹, J. D. Isles¹, K. A. Ryden², A. D. P. Hands², and D. Heynderickx³

¹British Antarctic Survey; ²University of Surrey; ³DHC Consultancy, Belgium

> ESWW13, Oostende, Belgium 14th -18th November 2016

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTI

Earth's Radiation Belts

- Our critical infrastructure extends to 6.6 Earth radii
- Over 1300 satellites in Earth orbit
- Most are exposed to relativistic electrons (E > 1 MeV) in the Earth's radiation belts
- These so-called "killer electrons" are a major cause of radiation damage

Satellite orbits and the van Allen radiation belts

Radiation Damage

- Relativistic electrons can penetrate satellite surfaces and embed themselves in insulating materials
- The charge can build up and eventually exceed breakdown levels
- The subsequent discharge can damage components and even destroy a satellite

Space Weather Effects on Satellites

- The impacts of space weather on satellite operations range from momentary interruptions of service to total loss of capabilities when a satellite fails
- During a major storm in 2003
 - 47 satellites experienced anomalies
 - more than 10 satellites were out of action for more than 1 day
 - the US\$ 640 M Midori-2 satellite was a complete loss

Artists impression of Midori-2 satellite

Motivation

- Europe is investing heavily in the Galileo global navigation satellite system
- There are currently 14 operational satellites in the developing constellation
- When fully operational in 2020 it will consist of 30 satellites with 10 satellites spread in three different orbital planes

Motivation

- Satellites in the Galileo constellation
 - operate in circular orbits
 - altitude: 23,300 km
 - inclination: 56°
 - pass through the heart of the outer radiation belt
 - may be exposed to large fluxes of relativistic electrons

Satellite orbits and the van Allen radiation belts

Motivation

- Satellite operators and engineers require realistic estimates of the highest charging currents that are likely to be encountered in MEO
 - to assess the impact of an extreme event
 - to improve resilience of future satellites
- Satellite insurers require this information
 - to ensure satellite operators are doing all they can to reduce risk
 - to help them evaluate realistic disaster scenarios

Objective

• The objective of this study is to calculate the 1 in 10, 1 in 50, and 1 in 100 year internal charging currents in medium Earth orbit

Giove-A

- Study uses data from ESA's Giove-A satellite
- This satellite was the first test satellite of the Galileo GNSS
- It was launched in December 2005 to
 - test technology in orbit
 - claim frequencies allocated to Galileo

credit: ESA

Orbital Parameters Altitude: 23,300 km Inclination: 56° Period: 14 hours

Giove-A

- Giove-A was initially designed with a lifetime of 27 months
- This lifetime has been greatly exceeded and the satellite continues to acquire good data
- For this study we use data from the SURF internal charging monitor
- Use data from 29th December 2005 to 5th January 2016

credit: ESA

Orbital Parameters Altitude: 23,300 km Inclination: 56° Period: 14 hours

- SURF is designed to measure the small currents which penetrate spacecraft surfaces and cause internal charging
 - consists of three aluminium collector plates mounted in a stack
 - each plate is connected to an electrometer to measure the deposited current
 - measured currents lie in the range of fAcm⁻² to pAcm⁻²

- The top plate is 0.5 mm thick and lies underneath 0.5 mm Al-equivalent shielding
 - responds to electrons above 500 keV with a peak response between 700 and 900 keV

- The top plate is 0.5 mm thick and lies underneath 0.5 mm Al-equivalent shielding
 - responds to electrons above 500 keV with a peak response between 700 and 900 keV
- The middle plate is 0.5 mm thick and lies underneath 1.0 mm Al-equivalent shielding
 - responds to electrons above 700 keV with a peak response between 1.1 and 1.4 MeV

- The top plate is 0.5 mm thick and lies underneath 0.5 mm Al-equivalent shielding
 - responds to electrons above 500 keV with a peak response between 700 and 900 keV
- The middle plate is 0.5 mm thick and lies underneath 1.0 mm Al-equivalent shielding
 - responds to electrons above 700 keV with a peak response between 1.1 and 1.4 MeV
- The bottom plate is 1.0 mm thick and lies underneath 1.5 mm Al-equivalent shielding
 - responds to electrons above 1.1 MeV with a peak response between 1.6 and 2.1 MeV

SURF Database

- The SURF plate current data were provided at a 5 minute time resolution
- For each time step we calculated L* using the Olson-Pfitzer quiet time model and the IGRF field at the beginning of the appropriate year

Data Analysis

- We determined the daily-averaged plate currents as a function of L* for 10 evenly spaced values of L* from L*=4.75 to L* = 7.00
 - ~3025 good quality data points at each L* corresponding to 8.3 years of operational data

Data Analysis

- We determined the daily-averaged plate currents as a function of L* for 10 evenly spaced values of L* from L*=4.75 to L* = 7.00
 - ~3025 good quality data points at each L* corresponding to 8.3 years of operational data
- To compare with engineering standards we also calculated the daily averaged plate currents averaged along the orbit path
 - to ensure good coverage used days with > 80% coverage
 - 2223 good quality data points corresponding to 6.1 years of operational data

Summary Plot

- To inspect the data we produced annual summary plots
- We plotted the SURF data at 4 representative L* values together with the GOES E > 2 MeV fluxes
- Data confirmed to be very clean and no outliers were found

Exceedance Probability

- Top plate currents cover two orders of magnitude ranging from 0.005 to 1.2 pAcm⁻²
- Largest observed top plate currents range from 0.04 pAcm⁻² at L* = 7 to 1.2 pAcm⁻² at L* = 4.75

Exceedance Probability

- Middle plate currents cover two orders of magnitude ranging from 0.001 to 0.43 pAcm⁻²
- Largest observed middle plate currents range from 0.01 pAcm⁻² at L* = 7 to 0.43 pAcm⁻² at L* = 4.75

Exceedance Probability

- Bottom plate currents cover two orders of magnitude ranging from 0.004 to 0.48 pAcm⁻²
- Largest observed bottom plate currents range from 0.02 pAcm⁻² at L* = 7 to 0.48 pAcm⁻² at L* = 4.75

Extreme Value Analysis

- Two main methods for extreme value analysis
 - block maxima
 - exceedances over a high threshold
- The exceedances over the threshold approach makes the best use of the available data and has been successfully applied in many fields
- For this approach the appropriate distribution function is the Generalised Pareto Distribution (GPD)

Declustering

- Values can exceed the threshold on consecutive days
- The statistical analysis requires that the individual exceedances are independent
- Technique to deal with this is known as declustering

Declustering

- Use an empirical rule to define clusters of exceedances
- Consider cluster to be active until 3 consecutive daily averages fall below the threshold
- Identify the maximum excess in each cluster
- Fit the GPD to the cluster maxima

Generalised Pareto Distribution

• The GPD may be written in the form

$$G(x-u) = 1 - (1 + \xi(x-u)/\sigma)^{-1/\xi}$$

where: x are the cluster maxima above the chosen threshold u ξ is the shape parameter which controls the behaviour of the tail σ is the scale parameter which determines the dispersion or spread of the distribution

• We fit the GPD to the tail of the distribution using maximum likelihood estimation

Quality Checks

- We may assess the quality of a fitted GPD model by comparing the empirical and modelled probabilities and quantiles
- If the GPD model is a good method for modelling the exceeedances then both the probability and quantile plots should be linear

Probability and Quantile Plots

 The probability and quantile plots are both approximately linear showing that the GPD is a good method for modelling the exceedances

Determination of the 1 in N Year Event

- Our major objective is to determine the 1 in N year space weather event
- The plate current that is exceeded on average once every N years can be expressed in terms of the fitted parameters σ and ξ as:

$$x_{N} = u + (\sigma/\xi)(Nn_{d}n_{c}/n_{tot})^{\xi} - 1))$$

where n_d is the number of data points in a given year, n_c is the number of cluster maxima and n_{tot} is the total number of data points

• A plot of x_N against N is known as a return level plot

Top Plate: Return Level Plot at $L^* = 4.75$

Top Plate: Return Level Plot at L* = 4.75

- 1 in 10 Year plate current
 - 1.0 pAcm⁻²

Top Plate: Return Level Plot at L* = 4.75

- 1 in 10 Year plate current
 - 1.0 pAcm⁻²
- 1 in 100 Year plate current
 - 1.5 pAcm⁻²

Top Plate: 1 in N Year Event Levels

- 1 in 10 year top plate current
 - increases with decreasing L*
 - ranges from 0.03 pAcm⁻² at L*= 7.0 to 1.0 pAcm⁻² at L* = 4.75
- 1 in 100 year top plate current
 - lies in the range 0.04 to 1.5 pAcm⁻²
 - is generally a factor of
 1.2 1.8 times larger than the
 1 in 10 year event

Middle Plate: 1 in N Year Event Levels

- 1 in 10 year middle plate current
 - increases with decreasing L*
 - ranges from 0.01 pAcm⁻² at L*= 7.0 to 0.4 pAcm⁻² at L* = 4.75
- 1 in 100 year middle plate current
 - lies in the range 0.015 to 0.8 pAcm⁻²
 - is generally a factor of 1.2 – 2.7 times larger than the 1 in 10 year event

Bottom Plate: 1 in N Year Event Levels

- 1 in 10 year bottom plate current
 - increases with decreasing L*
 - ranges from 0.01 pAcm⁻² at L*= 7.0 to 0.4 pAcm⁻² at L* = 4.75
- 1 in 100 year bottom plate current
 - lies in the range 0.03 to 0.5 pAcm⁻²
 - is generally a factor of
 1.4 2.6 times larger than the
 1 in 10 year event

Comparison with Engineering Design Standards

- Both NASA and the European Cooperation for Space Standardization (ECSS) have guidelines on charging current
 - a maximum average current of 0.1 pAcm⁻² over a 24 hour period is commonly adopted
- For dielectrics operating at temperatures less than 25°C the ECSS have adopted a threshold of 0.02 pAcm⁻²
- For comparison with engineering design standards we repeated the analysis using daily-averaged plate currents over the entire orbit path

Daily-Averaged Top Plate Currents Averaged Along Orbit Path

- Top plate currents cover just under two orders of magnitude ranging from 0.003 to 0.2 pAcm⁻²
- Lower design threshold is exceeded on 1045 days (47% of days)
- Upper design threshold is exceeded on 60 days (2.7% of days)

Daily-Averaged Middle Plate Currents Averaged Along Orbit Path

- Middle plate currents cover two orders of magnitude ranging from 0.001 to 0.1 pAcm⁻²
- Lower design threshold is exceeded on 222 days (10% of days)
- Upper design threshold is exceeded on 3 days (0.1% of days)

Daily-Averaged Bottom Plate Currents Averaged Along Orbit Path

- Bottom plate currents cover just under two orders of magnitude ranging from 0.002 to 0.1 pAcm⁻²
- Lower design threshold is exceeded on 149 days (6.7% of days)
- Upper design threshold is exceeded on 3 days (0.1% of days)

1 in N Year Events Averaged Along Orbit Path

- We also conducted an extreme value analysis of the dailyaveraged plate currents averaged along the orbit path
- The 1 in 10 year top plate current is a factor of 2.1 times the upper design threshold
- The 1 in 10 year middle and bottom plate currents are equal to the upper design threshold

Plate	1 in 10 year current (pAcm ⁻²)	1 in 100 year current (pAcm ⁻²)
Тор	0.21	0.24
Middle	0.1	0.14
Bottom	0.1	0.16

Satellite Anomalies

- There has been a significant increase in satellite anomalies at GEO thought to be due to IESD in the second half of 2015 [D. Pitchford, private communication]
- Overall 19 satellite anomalies at GEO were identified in the first 160 days and 40 in the next 160 days

Satellite Anomalies

- The GOES E > 2 MeV flux and the SURF plate data at L* = 6.0 can be used to investigate the relationship between the satellite environment and satellite anomalies
- Days with one or two anomalies thought to be due to IESD are marked as purple and green asterisks respectively
- Most, but not all, anomalies are associated with high fluxes of relativistic electrons and large plate currents

Conclusions

- We have determined the 1 in 10, 1 in 50 and 1 in 100 year plate currents as a function of L* and along the orbit path
- The 1 in 10 year top, middle and bottom plate currents maximise at L* = 4.75 and are determined to be 1.0, 0.43 and 0.48 pAcm⁻² respectively
- Averaged along the orbit path the 1 in 10 year top, middle and bottom plate currents are 0.21, 0.1 and 0.1 pAcm⁻² respectively

Conclusions

- The 1 in N year plate currents serve as "yardsticks" or "benchmarks" to compare against current or previous space weather conditions
- The results may also be used to compute the return period of any given space weather event as a function of plate current and L* to determine if the event was particularly extreme at any given plate current or location.

Acknowledgements

- We would like to thank Sam Rason and Richard Hebden at SSTL for their work in extending the Giove-A operations and enabling us to receive the data
- The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreements number 606716 (SPACESTORM) and is also supported in part by the UK Natural Environment Research Council

ILMATIETEEN LAITOS Meteorologiska institutet Finnish meteorological institute

