Extreme Relativistic Electron Fluxes at Geosynchronous Orbit

N. P. Meredith (1), R. B. Horne (1), J. Isles (1) and J. V. Rodriguez (2, 3)
(1) British Antarctic Survey;
(2) University of Colorado Boulder;
(3) National Geophysical Data Center, Boulder

The research leading to these results was partly funded by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No 606716 SPACESTORM

IMC III Workshop, UCLA 23rd - 27th March, 2015
Extreme Relativistic Electron Fluxes at Geosynchronous Orbit

N. P. Meredith¹, R. B. Horne¹, J. Isles¹ and J. V. Rodriguez²,³

¹British Antarctic Survey;
²University of Colorado Boulder; ³National Geophysical Data Center, Boulder
Motivation

- Satellite operators, designers and insurers are interested in extreme space weather events to help them better understand the satellite environment and assess the impacts of an extreme event.
Motivation

• Satellite operators, designers and insurers are interested in extreme space weather events to help them better understand the satellite environment and assess the impacts of an extreme event

• The objective of this study is to calculate the electron flux for the 1 in 10, 1 in 50, and 1 in 100 year space weather event at geosynchronous orbit
Data Analysis

- Use GOES E > 2 MeV electron data from 1st January 1995 to 30th June 2014

- Study uses data from GOES 8, 9, 10, 11, 12, 13 and 15

Typical Orbital Parameters
Altitude: 35,800 km
Inclination: 0°

credit: NOAA
Data Analysis

• Electron data
 • have been corrected for proton contamination
 • for the first time the data have been corrected for dead time
 • dead time correction ranges from a factor of 1.0-1.15 for fluxes around 5000 cm$^{-2}$s$^{-1}$sr$^{-1}$ to ~2 for the largest fluxes observed

Typical Orbital Parameters
Altitude: 35,800 km
Inclination: 0°

credit: NOAA
Primary Geographic Longitudes

- GOES satellites operate at two primary geographic longitudes, GOES East at 75° and GOES West at 135° W

- The satellites are at different magnetic latitudes with GOES East at 11° N and GOES West at 4° N

- GOES East and GOES West are at different L shells

- Since the flux of energetic electrons generally decreases with L near geosynchronous orbit we conduct our analysis for GOES East and West separately

Figure adapted from Onsager et al., 2004
Good Quality Data Points

- In total there are 5844 good quality data points at GOES West, corresponding to approximately 16 years of operational data.

- There are 5649 good quality data points at GOES East, corresponding to approximately 15.5 years of operational data.
Exceedance Probability

- Probability that an individual sample J is greater than j \((P[J>j]) \)
Exceedance Probability

- Probability that an individual sample J is greater than j \((P[J>j])\)

- Flux that is exceeded 0.1% of the time is
 - \(4.5 \times 10^4 \text{ cm}^{-2}\text{s}^{-1}\text{sr}^{-1}\) at GOES East
 - \(1.35 \times 10^5 \text{ cm}^{-2}\text{s}^{-1}\text{sr}^{-1}\) at GOES West
Exceedance Probability

- Fluxes at GOES West are typically a factor of 2.5 higher than those at GOES East.
- This is largely due to the fact that the satellite at GOES West is at a lower magnetic latitude and hence L shell.
Extreme Value Analysis

• Two main methods for extreme value analysis
 • block maxima
 • exceedances over a high threshold

• For comparison with earlier work (e.g., Koons [2001]) we use the exceedances over a high threshold method

• For this approach the appropriate distribution function is the Generalised Pareto Distribution (GPD)
Generalised Pareto Distribution

• The GPD may be written in the form

\[G(x-u) = 1 - (1 + \frac{\xi(x-u)}{\sigma})^{-1/\xi} \]

where: \(x \) are the data values above the chosen threshold \(u \)
\(\xi \) is the shape parameter which controls the behaviour of the tail
\(\sigma \) is the scale parameter which determines the dispersion or spread of the distribution

• The GPD is a distribution function

• \(1-G(x-u) \) representing the probability that a random variable \(X \) exceeds some value \(x \) given that it already exceeds a threshold \(u \)
Declustering

• Values can exceed the threshold on consecutive days

• The statistical analysis assumes that the individual exceedances are independent

• Technique to deal with this is known as declustering
Declustering

- Use an empirical rule to define clusters of exceedances and consider cluster to be active until 3 consecutive daily averages fall below the threshold.

- Identify the maximum excess in each cluster and assume cluster maxima to be independent, with conditional excess given by the GPD.

- Fit the GPD to the cluster maxima.
The level x_N which is exceeded on average once every N years is given by

$$x_N = u + \left(\frac{\sigma}{\xi}\right)(Nn_d\zeta^\xi - 1))$$

where $\zeta = n_c/n_{tot}$, the number of cluster maxima divided by the total number of daily values and $n_d = 365.25$ is the average number of days in any given year.

A plot of x_N against N is known as a return level plot.
GOES West: Return Level Plot

- One in Ten Year Flux
 - $1.84 \times 10^5 \, \text{cm}^{-2}\text{s}^{-1}\text{sr}^{-1}$

- One in Fifty Year Flux
 - $5.00 \times 10^5 \, \text{cm}^{-2}\text{s}^{-1}\text{sr}^{-1}$

- One in One Hundred Year Flux
 - $7.68 \times 10^5 \, \text{cm}^{-2}\text{s}^{-1}\text{sr}^{-1}$
• Largest observed flux is a one in fifty year event
GOES East: Return Level Plot

• One in Ten Year Flux
 • $6.53 \times 10^4 \text{ cm}^{-2}\text{s}^{-1}\text{sr}^{-1}$

• One in Fifty Year Flux
 • $1.98 \times 10^5 \text{ cm}^{-2}\text{s}^{-1}\text{sr}^{-1}$

• One in One Hundred Year Flux
 • $3.25 \times 10^5 \text{ cm}^{-2}\text{s}^{-1}\text{sr}^{-1}$
GOES East: Return Level Plot

- Largest observed flux is a one in fifty year event
Comparison with Koons [2001] Study

- Our results are generally larger than those presented in Koons [2001].

<table>
<thead>
<tr>
<th>Event</th>
<th>GOES West (cm$^{-2}$s$^{-1}$ sr$^{-1}$)</th>
<th>Koons [2001] (cm$^{-2}$s$^{-1}$ sr$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 in 10 yr</td>
<td>1.84x105</td>
<td>6.78x104</td>
</tr>
<tr>
<td>1 in 20 yr</td>
<td>2.83x105</td>
<td>7.98x104</td>
</tr>
<tr>
<td>1 in 50 yr</td>
<td>5.00x105</td>
<td>9.57x104</td>
</tr>
<tr>
<td>1 in 100 yr</td>
<td>7.68x105</td>
<td>1.08x105</td>
</tr>
</tbody>
</table>

- For example, the 1 in 10 year event at GOES West is about a factor of 2.7 times that estimated by Koons [2001].

- For more extreme events, the 1 in 100 year event at GOES West is about a factor of 7 times that estimated by Koons [2001].
July/August 2004

- Largest $E > 2$ MeV flux of 4.91×10^5 cm$^{-2}$s$^{-1}$sr$^{-1}$ observed at GOES-West on 29th July 2004

- Coincided with the largest $E > 2$ MeV flux of 1.93×10^5 cm$^{-2}$s$^{-1}$sr$^{-1}$ at GOES-East

- Independent measurements of this extreme flux event suggests the flux event is real

- GOES-West flux exceeded 10,000 cm$^{-2}$s$^{-1}$sr$^{-1}$ for nine consecutive days from 28th July to 5th August
July/August 2004

- Double Star TC1 and TC2 reported over 30 anomalies during the period from 27 July to 10 August [Han et al., 2005]

- These anomalies largely occurred in the Earth’s radiation belt and were attributed to internal charging [Han et al., 2005]

Han et al., JSR, 2005
July/August 2004

- On 3 August, during the extended period of enhanced E > 2 MeV electron fluxes, Galaxy 10R lost its secondary xenon ion propulsion system [Choi et al., 2011]

- This reduced its lifetime significantly resulting in an insurance payout of US $75.3 M
What Caused the Extreme Event?

- Three consecutive storms
- IMF Bz remained southward for significant periods during recovery phase of each storm
- Average value of AE index around 900 nT for first 10 hours of each recovery phase
- Such high and sustained levels of AE are likely to be associated with
 - strong and sustained levels of whistler mode chorus
 - elevated seed electrons
 - strong acceleration of electrons to relativistic energies

Galaxy 10 R secondary XIPS failure
Conclusions

• The daily average flux of E > 2 MeV electrons measured at GOES West is typically a factor of 2.5 higher than that measured at GOES East.

• The 1 in 10, 1 in 50 and 1 in 100 year event at GOES West are 1.84×10^5, 5.00×10^5 and 7.68×10^5 cm$^{-2}$s$^{-1}$sr$^{-1}$ respectively.

• The largest event seen during the study period was particularly extreme. Our study suggests that this was a one in fifty year event.
Acknowledgements

- The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreements number 606716 (SPACESTORM) and is also supported in part by the UK Natural Environment Research Council.