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Why are we interested In low energy
electrons (< 200 keV) In the Inner magnetosphere?

» Surface charging by electrons with < 100 keV can cause significant damage
and spacecraft anomalies.

» The distribution of low energy electrons, the seed population (10 to few
hundreds of keV), is critically important for radiation belt dynamics.

» Chorus emissions (intense whistler mode waves) excited in the low-density
region outside the plasmapause are associated with the injection of keV plasma
sheet electrons into the inner magnetosphere.

» The electron flux at the keV energies is largely determined by convective and
substorm-associated electric fields and varies significantly with geomagnetic
activity driven by the solar wind — variations on time scales of minutes!

No averaging over an hour/day/orbit!



It Is challenging to nowcast and forecast low
energy electrons

Surface charging events vs. geomagnetic conditions

Surface charging, HFAE and LFHE events

| times: tables 6-8 from Mateo-velez et al. Severe geostationary enviroments..., J. Spacecraft and Rockets |

It is NOT necessary to have even a
moderate storm for significant surface
charging event to happen
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The keV electron flux is largely determined
by convective and substorm-associated
electric fields and varies significantly

with geomagnetic activity — variations on
time scales of minutes! o
No averaging over an hour/day/orbit!
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Starm -initial Starm -main Storm -recovery Substorms -intense Substorms

Mateo Vélez et al., Severe geostationary
environments: from flight data to numerical
estimation of spacecraft surface charging,
Journal of Spacecraft and Rockets,
submitted, 2015

Correct models for electromagnetic fields,
boundary conditions, losses are
extremely hard to develop
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5-50 keV electrons during quiet event

November 25, 2011

The data: AMC 12 geostationary satellite,
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- Flux increases are related to
AE peaks only (less than 200 nT,
small, isolated substorms)

- The lower the energy,
the large the flux

- Electrons of different channels
behaves differently:

- 1st peak (AE=200 nT) at midnight
seen for energies > 11 keV

- 2nd peak (AE=120 nT) at dawn,
increase in all energies

Not a unique case
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Similar increase in electron fluxes during
AE =400 nT and AE=1200 nT

February 28 - March 3, 2013

Small, CIR-driven storm with
Dst of 75 nT,

IMF Bz of -5 -10 nT,

Vsw from 350 to 650 km/s,
Psw peak at 8 nPa,

AE peaks of 800-1200 nT
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39.7-50.7 keV 31.1-39.7 keV 24.3-31.1 keV Log(flux)
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GOES 13 MAGED electron fluxes (MLT, AE)
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No distinct dependence of electron fluxes on AE strength
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Inner Magnetosphere Particle Transport
and Acceleration Model (IMPTAM) for

low energy electrons
(Ganushkina et al., 2013, 2014, 2015)

¢ traces electrons with arbitrary pitch angles from the plasma sheet to the inner L-shell
regions with energies up to 300 keV in time-dependent magnetic and electric fields

¢ traces a distribution of particles in the drift approximation under the conservation
of the 1st and 2" adiabatic invariants. Liouville theorem is used to gain information
of the entire distribution function

¢ for the obtained distribution function, we apply radial diffusion by solving the
radial diffusion equation

¢ electron losses: convection outflow and pitch angle diffusion by the electron lifetimes

¢ advantage of IMPTAM: can utilize any magnetic or electric field model, including
self-consistent magnetic field and substorm-associated electromagnetic fields.

Run online in real time: http://fp7-spacecast.eu, imptam.fmi.fi,
http://csem.engin.umich.edu/tools/imptam/



Current IMPTAM output compared to
GOES MAGED 40 and 75 keV electron fluxes
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Last 24 hours
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Last 24 hours
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Recent advances in IMPTAM for electrons

In order to follow the evolution of the particle distribution function f and particle fluxes in
the inner magnetosphere dependent on the position, time, energy, and pitch angle , it is
necessary to specify:

(1) particle distribution at initial time at the model boundary;

Model boundary at 10 Re with kappa electron distribution function. Parameters are the number
density n and temperature T in the plasma sheet given by the new empirical model at L=6-11
dependent on solar wind and IMF parameters constructed using THEMIS ESA (eV-30 keV)

and SST (25 keV — 10 MeV) data during 2007-2013.

(2) magnetic and electric fields everywhere dependent on time;

The magnetic field model is Tsyganenko T96 model [Tsyganenko, 1995] with Dst index,
solar wind pressure Pg,,, and IMF By, and B, as input parameters. The electric field is
determined using the solar wind speed Vg, the IMF strength B,,,- and its components B, and
B (via IMF clock angle 6,,,) being the Boyle et al. [1997] ionospheric potential.

(3) drift velocities;

(4) all sources and losses of particles.
Most recent and advanced parameterization of the electron lifetimes due to interactions with
chorus and hiss waves obtained by Orlova and Shprits [2014] and Orlova et al. [2014].



e- flux, 1/(cm”2 s sreV)

Electron fluxes observed by AMC 12 CEASE Il ESA instrument
for 15-50 keV energies and modeled

With THEMIS model and Orlova and Shprits [2014] and Orlova et al. [2014]
electron lifetimes
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Selected GEO environments #1
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3. IMPTAM computations
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From presentation at SC1C 2016, April 4-8, Noordwijk, The Netherlands: "From
GEO/LEO environment data to the numerical estimation of spacecraft surface
charging at MEO” by J.C. Mateo-Velez et al.



January 2, 2005, 1540 -1610 UT
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January 2, 2005, 1700 -1730 UT

File: jlj061200.dat, time: 17:00

TIPS
'
"
’

.
"
W
L

File: jl j062400.dat, time: 17:20
6h

L shell

12h : Oh

18h

6.5

log(flux, 1/(cm2 s sr keV))

log(flux, 1/(cm2 s st keV))

File: jio061800.dat, time: 17:10 MaX ﬂUX a.t M Ecl
6.5

6h

i
et e
e "

L shell

)

12h

log(flux, 1/(cm2 s sr keV))

6h

L shell
g

12h

log(flux, 1/(cm? s sr keV))

18h



Summary

IMPTAM is very suitable for modeling of fluxes of low energy electrons (< 200 keV)
responsible for surface charging

It is NOT necessary to have even a moderate storm for significant surface charging
event to happen. Substorms are important but low energy electrons (at geostationary)
are not organized by AE index, for example.

It is a challenge to model low energy electrons with their important variations on 10
min scales. Advance made: A revision of the source model at 10 Re in the plasma sheet
was done using the particle data from THEMIS ESA and SST instruments for years
2007-2013. Most advanced representation of loss processes for low energy electrons
due to wave-particle interactions with chorus and hiss were incorporated using electron
lifetimes following Orlova and Shprits [2014] and Orlova et al. [2014].

Modeling of documented surface charging events detected at LANL with further
propagation to MEO: good agreement at GEO, reasonable values at MEO?

Still open issue: proper incorporation of substorm effects



