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Slot Region Dynamics

Baker et al., Nature, 2004

SAMPEX 2-6 MeV Electrons

slot

• Slot region

• is not always empty.

• can become filled during 
exceptionally large storms 
such as the Halloween 
Storms of 2003.

• subsequently reforms over 
the following weeks to 
months.



Slot Region Loss Timescales

• Loss timescales for 2-6 MeV 
electrons in the centre of the slot 
at L = 2.5 are estimated to be of 
the order of 2.9 – 4.6 days.

• This is consistent with theoretical 
expectations based on losses 
due to plasmaspheric hiss 
[Meredith et al., 2007].

Baker et al., Nature, 2004
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• The experimental lifetime at    
L = 2.0 is ~20 days [Baker et 
al., 2007].

• This lifetime is much shorter 
than the theoretical estimates 
of a few hundred days as a 
result of losses due to 
plasmaspheric hiss alone. 
[Meredith et al., 2007].
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Slot Region Loss Timescales
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L = 2.0 • In this study we perform a 
comprehensive survey of 
relativistic electron loss 
timescales in the slot region.

• We compare SAMPEX 
observations with theoretical 
predictions derived from wave 
models based on CRRES 
observations.



f < 2 kHz

Slot Region Dynamics

• The flux at each location is 
characterised by a number of 
abrupt rises followed by gradual 
exponential decay.

• The abrupt increases 

• can be as large as 5 orders 
of magnitude.

L = 3.0
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f < 2 kHz

Slot Region Dynamics

• The flux at each location is 
characterised by a number of 
abrupt rises followed by gradual 
exponential decay.

• The abrupt increases 

• can be as large as 5 orders 
of magnitude.

• are associated with strong 
storms and enhanced 
magnetic activity.
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f < 2 kHz

Loss Timescales
L = 3.0

L = 2.5

L = 2.0

Kp Index

Dst Index

• To quantify the decay rates we fit 
an exponential function of the 
form:

J = J0exp(-t/τ)

• where τ is the loss timescale



f < 2 kHz

Loss Timescales
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• To quantify the decay rates we fit 
an exponential function of the 
form:

J = J0exp(-t/τ)

• where τ is the loss timescale



f < 2 kHz

Loss Timescales
τ= 8.0±2.6 d

τ= 3.6±1.6 d

L = 3.0

L = 2.5

L = 2.0

Kp Index
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L τ (days)
3.0 8.0 ± 2.6
2.5 3.6 ± 1.6

• To quantify the decay rates we fit 
an exponential function of the 
form:

J = J0exp(-t/τ)

• where τ is the loss timescale



f < 2 kHz

Loss Timescales
τ= 8.0±2.6 d

τ= 3.6±1.6 d

τ= 20±9.5 d

L = 3.0

L = 2.5

L = 2.0

Kp Index

Dst Index

L τ (days)
3.0 8.0 ± 2.6
2.5 3.6 ± 1.6
2.0 20 ± 9.5

• To quantify the decay rates we fit 
an exponential function of the 
form:

J = J0exp(-t/τ)

• where τ is the loss timescale



f < 2 kHz

Lifetime of 2 MeV Electrons

Lifetimes have a minimum of 
~3.6 days in the centre of the slot 
increasing to ~20 days and ~8 days 
at the inner and outer edge.



f < 2 kHz

f > 2 kHz

f > 2 kHz
• Broadband plasmaspheric 

emissions can be split into two 
categories [Meredith et al., 2006]:

– Plamaspheric hiss
• 100 Hz < f < 2 kHz
• generated by whistler mode 

chorus

– Lightning-generated whistlers
• 2 kHz < f < 5 kHz 
• produced by thunderstorms 

on Earth

Broadband Plasmaspheric Emissions



Calculation of Loss Timescales from Waves 

• Use global models of the wave 
spectral intensity based on 
CRRES observations.

• Calculate bounce-averaged pitch 
angle diffusion rates using the 
PADIE code [Glauert and 
Horne, 2005].

• Determine the loss timescale 
and the evolution of the pitch 
angle distribution using the 1D 
pitch angle diffusion equation 
following Lyons et al., [1972].

Meredith et al., JGR, 2007



f < 2 kHz

Lifetimes due to Hiss

• Wave power in the frequency 
range 100 Hz – 5 kHz is 
dominated by plasmaspheric 
hiss.

• We begin by considering the 
effect of hiss during quiet 
conditions (AE* < 100 nT).



f < 2 kHz

Lifetimes due to Hiss

• At L = 3.0 there is a minimum 
in the diffusion rates at large 
pitch angles, but the diffusion 
rate does not fall by more than 
a factor of 2 compared to the 
edge of the loss cone.

• The pitch angle distribution 
quickly reaches an equilibrium 
state and decays exponentially 
at all pitch angles on a 
timescale of 12 days.



f < 2 kHz

Lifetimes due to Hiss

• At L = 2.5 there is a larger 
minimum in the diffusion rate.

• The pitch angle distribution 
quickly reaches an equilibrium 
state and decays exponentially 
at all pitch angles on a 
timescale of 7 days.



f < 2 kHz

Lifetimes due to Hiss
• At L = 2.0 there is a very deep 

minimum in the diffusion rate.

• This dramatically effects the 
evolution of the PAD:

• The decay is pitch angle 
dependent.

• The distribution initially 
decays more rapidly at 
smaller pitch angles.

• Once an equilibrium shape is 
reached the entire distribution 
decays with a timescale of 278 
days.



f < 2 kHz

Lifetime of 2-6 MeV Electrons



f < 2 kHz

Lifetimes due to Plasmaspheric Hiss

+ Hiss, quiet (AE* < 100 nT)
+ Hiss, active (AE* > 500 nT)

• Hiss is the dominant process 
responsible for loss in the outer 
slot region (2.3 < L < 3.0).

• Theoretical predictions based on 
overall loss timescales are too 
long at lower L.



f < 2 kHz

SAMPEX Measurements at L = 2.0

• At L = 2.0 the decay is pitch 
angle dependent.

• SAMPEX makes 
measurements at low 
altitudes (~600 km).

• A locally mirroring particle 
has an equatorial pitch angle 
of ~18o at L = 2.0.

• Here we should compare 
SAMPEX measurements with 
the model flux at 18o.



f < 2 kHz

Flux Decay at L = 2.0

• SAMPEX measures a relatively constant exponential decay.



f < 2 kHz

Flux Decay at L = 2.0 

• Decay of the model flux at αeq = 18o is time-dependent and 
cannot explain the observations.

• Losses due to plasmaspheric hiss alone cannot explain the 
losses at L = 2.0. 



f < 2 kHz

• We now consider the 
combined effect of lightning-
generated whistlers (LGWs) 
and plasmaspheric hiss.

• LGWs dominate the 
spectrum above 2 kHz and 
so we add an additional 
component from 2-5 kHz.

• We again present the results 
for quiet conditions (AE* < 
100 nT)

Losses due to Hiss 
and LGWs



f < 2 kHz

Losses due to Hiss 
and LGWs

• At L = 2.5 and L = 3.0 there is 
little or no change in the 
diffusion rates and virtually 
no change in the loss rates.



f < 2 kHz

Losses due to Hiss 
and LGWs

• At L = 2.0, the effect of the 
additional wave power is to 
increase the diffusion rates in 
the deep minimum.

• The distribution now evolves 
more quickly to an 
equilibrium state and decays 
with a lifetime of 34 days.



f < 2 kHz

Evolution of the Flux at SAMPEX altitudes

• Decay of the model flux at αeq = 18o gives reasonable 
agreement with the data.



f < 2 kHz

Lifetimes due to Plasmaspheric Hiss

+ Hiss, quiet (AE* < 100 nT)
+ Hiss, active (AE* > 500 nT)



f < 2 kHz

Lifetimes due to Hiss and LGWs

+ Hiss and LGWs, quiet (AE* < 100 nT)
+ Hiss and LGWs, active (AE* > 500 nT)

Hiss and LGWs can explain the losses in
the inner slot (2.0 < L < 2.3).



Magnetosonic Waves

• Magnetosonic waves may 
also scatter radiation belt 
electrons at large pitch 
angles [Horne et al., 2007].

• These waves are
– intense electromagnetic 

emissions 
– fcH < f < fLHR

– observed near the 
equatorial plane

– 2 < L < 7
Horne et al., 2007



f < 2 kHz

Losses due to MSWs

• We cannot uniquely identify 
MSWs in the CRRES data.

• We use global averages of 
the wave spectral intensity 
observed within  ±3o of the 
equator as an estimate of the 
upper limit.



f < 2 kHz

Losses due to MSWs

• During quiet conditions 
MSWs make only a small 
change to the diffusion rates 
at large pitch angles.

• The resulting lifetime of 143 
days is too long to explain 
the observations.



f < 2 kHz

Losses due to MSWs

• During active conditions 
MSWs increase the diffusion 
rates at large pitch angles.

• The resulting loss timescale 
is 43 days.

• MSWs could contribute to the 
loss timescales during active 
conditions.

• Better models of MSWs 
required to establish the role 
of these waves.



Conclusions
• Pitch angle scattering by plasmaspheric hiss is responsible for 

electron loss in the outer slot region (2.3 < L < 3.0)

• In the inner slot region (2.0 < L < 2.3) electron loss is driven by 
plasmaspheric hiss and lightning-generated whistlers.

• Magnetosonic waves may also contribute to electron loss at L = 
2.0 but better wave models are required to determine the precise 
role of these waves.



Loss Timescales for 2.0 < L < 4.0
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