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Internal charging
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* Internal electric field is the parameter which determines ESD

events
» Dielectric breakdown typically at ~107 V/m

» |deally would have observations of electric fields developed inside
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Internal charging curve

At a given depth and assuming non-varying conductivity:
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If o is small (leading to large equilibrium E-fields) then time constant is long




Modelling electric field in dielectrics

Mike Bodeau™ examined charge/field build-up using
a ‘leaky capacitor’ model

Used GOES record of energetic electron fluxes in
GEO to create a 20 year history of electric
field/charge density

For long time constant materials the 0.1pA cm?
charging current rule could be insufficient.
Maybe be factor of ten lower for some materials.

*M Bodeau, High Energy Electron Climatology
that Supports Deep Charging Risk Assessment in
GEO, Proc. of 48t AIAA Aerospace Sciences
Mtg, January 2010, Orlando, Florida.

UNIVERSITY OF

SURREY



1-D leaky capacitor model

GOES >2MeV daily
average flux

—>

X K———

Assume fixed spectral
shape of AE8 @GEO
(160°W)

Dielectric,
conductivity
(constant)

Leakage
current J_= oE

E(t+At) =E(t)-e ™ +
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J, — charging current (NOVICE
simulation on AE8 spectrum)

— Q - accumulated charge

Electric field, £
= Q/gpe A
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Figure 12. 110-mil Shielding is Unsafe for Materials with Long Decay Time Constant
Predicted Cumulative Charge Density [inside 110 mil semi-cube shielding]

T
(D i — = 1500195 — — —,
733 ;

100 -

T2-MEY-95 e iy S ] s =i it T

Critical charge

density threshold
| for ESD is in ~6-20
nC/sg.cm range

110 mils of AL shielding is
not safe for materials with
time constants longer than
~2-3 weeks
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*M Bodeau, High Energy Electron Climatology that Supports Deep Charging Risk Assessment in GEO, Proc. of 48th AIAA Aerospace Sciences

Mtg, January 2010, Orlando, Florida. »
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Drawbacks of the simple model

Fixed electron spectrum scaled by >2MeV flux

— AES8 is a static long term average spectrum whereas actual one
Is continually changing

Fixed bulk conductivity
- Radiation induced conductivity in dielectrics not accounted for

— Can time constants really be as long as weeks, months or
years?
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New developments in this paper

Use in-flight measured deposited currents
= |nstead of 2MeV flux + fixed spectrum + radiation transport calculation
= Directly acquired by the SURF instrument
Include radiation induced conductivity (RIC)
* important in many polymers

MEO orbit E-field modelling

« critical infrastructure located here (navigation satellites)
 significant internal charging threat

» this is where our measurements are from
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Internal charging current measurements

 December 2005 launch

* Orbit 23,260 km and 56
degrees inclination, 27
month lifetime

* Re-orbited by +300km in
2009

« Still collecting data.

Thermal blanket <0.2 mm Al eq.

______ [

0.5 mm Al SURF plates

1 mm Al
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Top plate charging current (daily averages)
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0.4 200
- April 2010 electron 180
- event 160
é Data gap %
Q 03 Electron 'desert’ _ a
< ¥ 140 E
o =
= 0.25
< | 120 £
Pud o
> | 100 &
0.2
O | 4
=
. 20 73
0.15 . o]
Q
60 -I-E
0.1 8
40 =
[, ]
0.05
20
] 0
1904’
o
Nl

UNIVERSITY OF

3 SURREY




Leaky capacitor model

0.5mm Al
/ outer shield
| |
0.5mm Al

@ J, — charging current (measured by
— SUREF top plate)

Q - accumulated
B\ charge
/ E-field
Dielectric ' !
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Dielectric internal field modelling (2006 — 2008)

0.5 mm Al shielding; 0.5mm Al-eq. thickness dielectric
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Dielectric internal field modelling (2006 - 2009)

0.5 mm Al shielding

0.5mm Al-eq. thickness absorber
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Electric fields (MEO, 0.5mm Al shield, 0.5mm Al-eq
absorber, no RIC)

0.5 mm Al shielding; 0.5mm Al-eq. thickness absorber

—E-field no RIC (top, T = 2 days) —E-field no RIC (top, 20 days) —E-field no RIC (top, 200 days)
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Radiation induced conductivity (RIC)

lonising dose leads to generation of T-00E-1
additional charge carriers

10

100

10

Can be due to primary particles or
secondary (bremsstrahlung)

ILUUE-T0

sonductivity (ohm-cm)-1

g = 0 +ka.A

Where gy is the dark conductivity (Q'cm-1)

delta = 0.60
Kp= 1.6E-16 fohm-cm-rad-s

FUUE=1r

k, is the co-efficient of prompt RIC (Q'cm rad s)
D is ionising dose rate (rad s™)

A is a dimensionless material dependent exponent
(A<1)

A is typically in range 0.6 to 1.0

Dose rate (rad/s)



Leaky capacitor (with RIC added)

0.5mm Al
outer shield

il

Dielectric equivalent to
0.5mm Al (SURF top plate)

J, — charging current (measured by SURF

top plate)

M Q - accumulated charge

Dose rate

determined

by |

current

J,— transmitted current (measured
by SURF middle and bottom plates)

transmitted

dD/dt [rad/s] = 1.92 x 10" J,[A m?]
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Effect of including RIC
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Electric field Vm-1

Effect of changing conductivity parameters

—E-field with sigma 1e-17 + RIC (Kp=2e-15, A=0.8)
E-field with sigma 1e-18 + RIC (Kp=2e-15, A=0.8)
E-field with sigma 1e-17 + RIC (Kp=2e-16, A=0.8)

—E-field no RIC (o = 1E-17, T = 20 days)

7.10E+07
6.10E+07
5.10E+07
4.10E+07 W
3.10E+07 l
2.10E+07
1.10E+07 V\f‘ [ , ‘
IR A A1 WW A
1.00E+06 F v\
‘00 ”00 .oz ,00 “ef ”OQ' \00 ,00 ,00 ,oe.
0& ?}Q 0& 06\ ?50 ‘&6\ 0& 0& 06\ (‘0&
0@" oe" 00“ oz" oef‘ 0@" 0@" 0@" Qe" o
2 > P D P P 2 2 D »




Conclusions

Modelling of dielectric internal fields is assisted by using in-flight current
measurements

Can take into account RIC: clearly important moderating factor on time
constants and field strengths

Need better knowledge of RIC parameters
Need more in-flight charging current measurements

Can generate a space weather ESD threat ‘index’ — could be done in
real time.
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