

Radiation Experiments and New Materials

T. Paulmier, B. Dirassen, R. Rey

The research leading to these results funded in part by the European Union Seventh Framework Programme (FP7) under grant agreement No 606716 SPACESTORM

Close Out Meeting, Cambridge, UK, 23 March 2017

onera

HE ERENCH AEROSPACE LAR

Outline

- Motivations
- Physics of internal charging
- Objectives of the current project
- Experimental facilities and measurement set-up
- Characterisation of materials used on internal parts
- Characterisation of components in representative electron environment
- Conclusion

Motivations

Harsh radiation environment in MEO

- High fluxes at high energy levels : irradiation on inner elements
- \Rightarrow important effect on internal charging with potentially high charging kinetics

- \Rightarrow Consequence : generation of high electric field
 - Initiation of disruptive ESD \rightarrow high risks on metallic floating parts
 - Dielectric breakdown
 - Damages on electronics
 - EMC issues
 - Degradation of physical properties

3

Physics steering internal charging

• Physical mechanims steering charging potential

Physics steering internal charging

Charging behaviour of materials in space

Effect of radiation dose

- Radiation induced conductivity RIC (instantaneous effect)
- $\sigma_{ric} = k \left(\frac{dD}{dt}\right)^{\Delta}$ • Effect of radiation dose : $\sigma_{RIC} = f(D)$
- Permanent effect : Physical and chemical ageing

Objectives

 Assess impact of extreme space weather and events on internal charging

- Improve our knowledge of phenomenology and physics of internal charging <u>at material</u> <u>level</u>
 - •Charging kinetics and charge decay assessment
 - •Effect of ionising dose : acts on radiation induced conductivity (RIC)
 - •Radiation history and recovery effect : radiation affect charging properties (delayed RIC)
 - •Ageing effect

⇒ Characterisation of electric and charging properties of defined materials and systems

• Prediction of charging levels and kinetics and risk of ESD for specific space weather events and Determine situation especially at risk due to materials or sub-systems design (geometry, specific wiring,...)

 \Rightarrow Characterisation of charging behaviour in representative irradiation conditions and geometries

• Definition of a test procedure for internal charging evaluation

⇒<u>Test under different irradiation conditions</u>

Test facilities for material characterisation

SIRENE facility

SIRENE functions

- Charging of space materials under representatiive electron beam spectrum in energy range [0-400 keV]
- Assessment of intrinsic and radiation induced conductivities (bulk and surface)
- Ageing through electron radiation (400 keV)

SIRENE Facility Characteristics :

✓<u>Two monoenergetic electron beams:</u> Electron gun : energy of 7 to 100 keV, fluxes 0-5 nA/cm2 Van de Graaff accelerator: 400 keV, 1 pA.cm⁻² – 5 nA.cm⁻²

✓ Instrumentation : Kelvin probe, PEA in situ, current

✓<u>Operating conditions :</u> Vaccum : 10⁻⁶ torr Temperature : -150°C/+250°C

Test facilities for internal charging

GEODUR facility

Equipped with a 2.5 MeV Van de Graaff accelarator + 35 keV electron gun Spot size = \emptyset 160mm Temperature range [-150°C, +250°C] Electron Flux ranging from 0.1 pA.cm⁻² to 40 nA.cm⁻² Surface potential (KP method – vertical axis scan) and electric current measurements Dosimetry and current measurements with Faraday cups Possible transfer of charged sample under vacuum to storage facility (SPIDER) Vacuum : 10⁻⁶ hPa

Phase 1: Characterisation of electric and charging properties of the defined materials and systems

- ✓ Seven tested materials :
 - Insulating and conformal parts : PEEK, PEI, Silicone varnish MAP 213, Solithane (polyurethane based resin)
 - ✓ Cable application insulating sheath : Kapton, ETFE
 - ✓ Paint : Polyurethane based paint (PU1)
- ✓ Extraction of electric conductivities + analysis of main trends (dose rate effect, electric field effect, ...)
- ✓ Analysis of cumulative effect (long term ionisation effect + ageing)

Analysis of conduction processes

- Charging at 20 keV
- Intrinsic relaxation
- Irradiation at 400 keV with four different fluxes : 0.1, 1, 10 and 50 pA/cm2

Bulk conductivity

$$=\varepsilon_o \varepsilon \frac{dV_s/dt}{V_s} \qquad \sigma_{ric} = k \left(\frac{dL}{dt}\right)$$

 σ =

RIC

k 2.3 10 ⁻¹³ 7.3 10 ⁻¹³ 10 ⁻¹² 1.58 10 ⁻¹³		PEI	PEEK	MAP 213	Kapton wire
	k	2.3 10-13	7.3 10-13	10-12	1.58 10-13
▲ 0.84 1 0.51 0.68	Δ	0.84	1	0.51	0.68

PEI, PEEK, Kapton, ETFE : $\rho > 10^{15} \Omega.m$

MAP 213 : ρ = 3.5 $10^{13}\,\Omega.m$ Solithane : ρ = 8 $10^{13}\,\Omega.m$

Effect of dose

- Successive irradiation (low dose)
- Ageing (doses > 10^5 Gy \rightarrow 5-6 years close to the surface behind 1 mm shielding)

- Radiation history : delayed effect
- Different behaviours in regard of high dose
 - Degradation of conductivity for PEEK and PEI
 - Higher conductivity for Kapton
- Data used for model parameter extraction

Numerical simulation

From 01/01/2010 to 30/06/2010 Shielding : 0,5 mm

SURF data

With ONERA model (RIC = f(D))

Numerical simulation

From 01/01/2010 to 30/06/2010

SURF data

Comparison between ONERA model (RIC = f(D)) and conventional model (RIC = constant)

- Phase 2: Characterisation of charging behaviour in representative irradiation conditions and geometries
 - Irradiation of PCB (polyimide based PCB) under representative worst case MEO conditions with and without grounded tracks and detection of any electrostatic discharge
 - ✓ Irradiation of space used materials under representative MEO conditions to study charging kinetics

1. Assessment of electron spectrum behind 2.5 mm shielding

- The GEODUR spectrum can be fitted to get close to the MEO worst case spectrum behind shielding - Materials tested with spectrum behind 2.5 mm shielding

C. Inguimbert, S. Bourdarie, "Etude de l'environnement électronique en orbite MEO et GEO", ONERA Rep 15 1/07608 DESP - Mars 2003

• Initiation of discharge (at 10⁶ V.m⁻¹) far below the dielectric breakdown threshold (> 10⁸ V.m⁻¹)

Process confirmed through different experiments

3 : Studying combined effect of charge implantation and RIC

- What is the charging behaviour when shifting the overall electron flux to higher values ?
- Can we think about a procedure for the reduction of test duration ?

- No strong evolution of charging level on PEEK \rightarrow RIC increase by the same factor as charging current
- Higher potential for higher flux for PEI, Kapton wire \rightarrow RIC increase lower than charging current
- \bullet Steady increase of charging kinetics for ETFE wires $\rightarrow~$ no RIC

 \Rightarrow Different behaviour for the materials in regard of spectrum variation

Knowing the electric properties of the material (RIC), we can apply an acceleration factor for internal charging assessment

No RIC (like ETFE)

With acceleration factor, we increase the charging kinetics and reach more quickly the threshold for discharge initiation

$$\frac{dV}{dt} = I/C$$

$\Delta = 1$ (like PEEK or Kapton HN)

Applying an acceleration factor does not change the equilibrium surface potential but allows reaching more quickly this equilibrium

$$V = \frac{1}{\sigma} \frac{L}{S} I$$

$$\sigma_{ric} = k \left(\frac{dD}{dt}\right)^{\Delta}$$

$$V_2 = \frac{1}{\sigma_2} \frac{L}{S} I_2 = \frac{1}{10.\sigma_1} \frac{L}{S} I_1 I_2 I_2$$
(1) (like PEI, silicon, Wires)

Applying an acceleration factor change the equilibrium surface potential but extrapolation is feasible knowing the conductivity parameters

$$V_2 = \frac{I_2}{\sigma_2} \cdot \frac{L}{S} = \Gamma^{1-\Delta} \frac{I_1}{\sigma_1} \cdot \frac{L}{S}$$
$$V_2 = \Gamma^{1-\Delta} \cdot V_1$$

Λ

Conclusion

- Development of representative electron spectrum
- Electric Characterisation of new space used insulating material in representative space environment → extraction of the key parameters for charge prediction and risk assessment
- Advancement on internal charging :
 - Irradiation under representative spectrum behind shielding : effect of this spectrum on charging behaviour
 - High charging risks in MEO environment
 - Key point : Radiation Induced conductivity
 - Material ageing effect
 - Use of acceleration factor for assessment with long duration
- Evidence of electrostatic discharge occurrence on critical elements : PCB with floating parts
- Definition of a test procedure for internal charging evaluation

