

Determination of the 1 in 10, 1 in 50 and 1 in 100 Year Space Weather Event

Nigel P. Meredith¹, Richard B. Horne¹, John D. Isles¹, Juan V. Rodriguez², Janet C. Green³, Keith A. Ryden⁴, Alex D. P. Hands⁴, Ingmar Sandberg⁵ and Constantinos Papdimitriou⁵

British Antarctic Survey, UK; (2) National Geophysical Data Center, Boulder, USA;
 (3) Space Hazards Applications LLC, Colorado, USA; (4) Surrey Space Centre, University of Surrey, UK;
 (5) Space Applications and Research Consultancy, Athens, Greece

SPACESTORM Close-Out Meeting Cambridge, UK, 23rd March 2017

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Motivation

- Modern satellites have a life expectancy of 10-20 years.
- Satellite operators and engineers therefore require realistic estimates of the worst case environments that may occur on these and longer timescales.
- Satellite insurers also require this information to help them evaluate realistic disaster scenarios.

Extreme Space Weather Events

- As part of SPACESTORM we have conducted extreme value analyses to determine the 1 in 10, 1 in 50, and 1 in 100 year space weather event for
 - relativistic electrons at GEO and HEO
 - internal charging currents at MEO
 - energetic electrons at LEO

Extreme Value Analysis

- Two main methods for extreme value analysis
 - block maxima
 - exceedances over a high threshold
- The exceedances over the threshold approach makes the best use of the available data and has been successfully applied in many fields
- For this approach the appropriate distribution function is the Generalised Pareto Distribution (GPD)

Declustering

- Values can exceed the threshold on consecutive measurements
- The statistical analysis requires that the individual exceedances are independent
- Technique to deal with this is known as declustering

Declustering

- Use an empirical rule to define clusters of exceedances depending on the temporal behaviour of the data
- Identify the maximum excess in each cluster
- Fit the GPD to the cluster maxima

Generalised Pareto Distribution

• The GPD may be written in the form

$$G(x-u) = 1 - (1 + \xi(x-u)/\sigma)^{-1/\xi}$$

where: x are the cluster maxima above the chosen threshold u ξ is the shape parameter which controls the behaviour of the tail

 σ is the scale parameter which determines the dispersion or spread of the distribution

• We fit the GPD to the tail of the distribution using maximum likelihood estimation

Determination of the 1 in N Year Event

- Our major objective is to determine the 1 in N year space weather event
- The value that is exceeded on average once every N years can be expressed in terms of the fitted parameters σ and ξ as:

$$x_{N} = u + (\sigma/\xi)(Nn_{d}n_{c}/n_{tot})^{\xi} - 1))$$

where n_d is the number of data points in a given year, n_c is the number of cluster maxima and n_{tot} is the total number of data points

Relativistic Electrons at GEO

- For this study we use data from the EPS sensors on board the NOAA GOES satellites at GEO
- We use E > 2 MeV electron data from 1st January 1995 to 30th June 2014
- Study uses data from GOES 8, 9, 10, 11, 12, 13 and 15

credit: NOAA

Typical Orbital Parameters Altitude: 35,800 km Inclination: 0°

Relativistic Electrons at GEO

- Electron data
 - have been corrected for proton contamination
 - for the first time the data have been corrected for dead time
 - dead time correction ranges from a factor of 1.0-1.15 for fluxes around 5000 cm⁻²s⁻¹sr⁻¹ to ~2 for the largest fluxes observed

credit: NOAA

Typical Orbital Parameters Altitude: 35,800 km Inclination: 0°

GOES West: Return Level Plot

- 1 in 10 Year Flux
 - 1.84x10⁵ cm⁻²s⁻¹sr⁻¹

GOES West: Return Level Plot

- 1 in 10 Year Flux
 - 1.84x10⁵ cm⁻²s⁻¹sr⁻¹
- 1 in 100 Year Flux
 - 7.68x10⁵ cm⁻²s⁻¹sr⁻¹

GOES West: Return Level Plot

 Largest observed flux is a 1 in 50 year event

Comparison with Koons [2001] Study

- Our results are significantly larger than those presented in Koons [2001]
- The 1 in 10 year event at GOES West is about a factor of 2.7 times that estimated by Koons [2001]
- For more extreme events, the 1 in 100 year event at GOES West is about a factor of 7 times that estimated by Koons [2001]

Comparison with Koons [2001] Study

- Reasons for differences between studies include
 - use of modern instrumentation
 - correction of data for dead time
 - declustering of data
 - sorting data according to satellite location

Impact

- The revised extreme flux levels have been used to update the UK
 National Risk Assessment
- The results have also been used by a satellite operator in the evaluation of satellite tenders

Extended Analysis (1995-2017)

- Analysis recently updated to include an additional 2.5 years of data
- Data now cover 2 solar cycles

Extended Analysis (1995-2017)

- 1 in 10 Year Flux
 - 1.93x10⁵ cm⁻²s⁻¹sr⁻¹
 - 5% increase
- 1 in 100 Year Flux
 - 5.54x10⁵ cm⁻²s⁻¹sr⁻¹
 - 30% decrease
 - 5 times the Koons [2001] estimate
- Largest event seems more extreme – 1 in 80 year event

Energetic Electrons at LEO

- We use the 2 s resolution E > 30 keV, E > 100 keV, and E > 300 keV MEPED electron data from NOAA15 to NOAA19 from 1 July 1998 to 30 June 2014
- We calculated the maximum flux in each 3 h window as a function of energy and L^{*}

NOAA-19

credit: NOAA

Typical Orbital ParametersAltitude:854 kmInclination:98.7°Period:102.1 min

E > 30 keV Electrons: 1 in N Year Event Levels

- The 1 in 10 year flux of E > 30 keV electrons (black line) shows a gradual increasing trend with L* ranging from 1.8x10⁷ cm⁻²s⁻¹sr⁻¹ at L* = 3.0 to 6.6x10⁷ cm⁻²s⁻¹sr⁻¹ at L* = 8.0
- The 1 in 100 year flux (red line) is generally a factor of 1.1 to 1.5 larger than the corresponding 1 in 10 year event

E > 100 keV Electrons: 1 in N Year Event Levels

- The 1 in 10 year flux of E > 100 keV electrons (black line) peaks at 1.9x10⁷ cm⁻²s⁻¹sr⁻¹ at L* = 4.5–5.0 decreasing to minima of 7.1x10⁶ and 8.7x10⁶ cm⁻²s⁻¹sr⁻¹ at L*= 3.0 and L* = 8.0 respectively
- The 1 in 100 year event is a factor of 1.1 to 3.1 larger than the corresponding 1 in 10 year event

E > 300 keV Electrons: 1 in N Year Event Levels

- In contrast to the E > 30 keV electrons, the 1 in 10 year flux of E > 300 keV electrons shows a general decreasing trend with L^{*} ranging from 2.4x10⁶ cm⁻²s⁻¹sr⁻¹ at L^{*}= 3.0 to 1.2x10⁵ cm⁻²s⁻¹sr⁻¹ at L^{*}= 8.0
- The 1 in 100 year event (red line) is a factor of 1.7 to 5.9 larger than the corresponding 1 in 10 year event

Internal Charging Currents at MEO

- For this study we use data from the SURF internal charging monitor on board ESA's Giove-A spacecraft in MEO
- Use data from 29th December 2005 to 5th January 2016

credit: ESA

Orbital Parameters Altitude: 23,300 km Inclination: 56° Period: 14 hours

SURF Internal Charging Monitor

- SURF is designed to measure the small currents which penetrate spacecraft surfaces and cause internal charging
 - consists of three aluminium collector plates mounted in a stack
 - top, middle and bottom plate respond to electrons with energies greater than 500, 700 and 900 keV respectively

Plate	Threshold	Peak Response
Тор	500 keV	700-900 keV
Middle	700 keV	1.1-1.4 MeV
Bottom	900 keV	1.6-2.0 MeV

Top Plate: 1 in N Year Event Levels

- 1 in 10 year top plate current
 - decrease with L*
 - ranges from 1.0 pAcm⁻² at L*= 4.75 to 0.03 pAcm⁻² at L* = 7.0
- 1 in 100 year top plate current is generally a factor of 1.2 – 1.8 times larger than the 1 in 10 year event

Bottom Plate: 1 in N Year Event Levels

- 1 in 10 year bottom plate current
 - decrease with L*
 - ranges from 0.4 pAcm⁻² at L*= 4.75 to 0.01 pAcm⁻² at L* = 7.0
- 1 in 100 year bottom plate current is generally a factor of 1.4 – 2.6 times larger than the 1 in 10 year event

Comparison with Engineering Design Standards

- Both NASA and the European Cooperation for Space Standardization (ECSS) have guidelines on charging current
 - a maximum average current of 0.1 pAcm⁻² over a 24 hour period is commonly adopted
- For dielectrics operating at temperatures less than 25°C the ECSS have adopted a threshold of 0.02 pAcm⁻²
- For comparison with engineering design standards we repeated the analysis using daily-averaged plate currents over the entire orbit path

1 in N Year Events Averaged Along Orbit Path

- The 1 in 10 year top plate current is a factor of 2.1 times the upper design threshold
- The 1 in 10 year middle and bottom plate currents are equal to the upper design threshold

Plate	1 in 10 year current (pAcm ⁻²)	1 in 100 year current (pAcm ⁻²)
Тор	0.21	0.24
Middle	0.1	0.14
Bottom	0.1	0.16

Updated Analysis

- We recently updated the analysis to include an extra year of data
- We found only small differences in return levels when the extra year was included – of the order 2 – 5 %

Relativistic Electrons from HEO

- We use data from SREM on board ESA's INTEGRAL spacecraft in HEO
- Use data from October 2002 to 31st December 2016

credit: ESA

Orbital Parameters Apogee: 153,000 km Perigee: 10,000 km Inclination: 51.6° Period: 72 h

Relativistic Electrons from HEO

- Flux intensities derived using SREM dedicated inverse scheme developed by Sandberg *et al.* [2012]
- Use data within 15° of magnetic equator
- Determine the 1 in N year space weather events as a function of energy and L*

Orbital Parameters Apogee: 153,000 km Perigee: 10,000 km Inclination: 51.6° Period: 72 h

Integral

$L^* = 4.5$

- 1 in 10 year flux decreases from 1.4x10⁷ cm⁻²s⁻¹sr⁻¹MeV⁻¹ at E = 0.69 MeV to 5.3x10⁵ cm⁻²s⁻¹sr⁻¹MeV⁻¹ at E = 2.05 MeV
- 1 in 100 year flux is a factor of 1.1 to 1.2 times larger than the 1 in 10 year flux

- 1 in 10 year flux decreases from 4.4x10⁶ cm⁻²s⁻¹sr⁻¹MeV⁻¹ at E = 0.69 MeV to 1.2x10⁵ cm⁻²s⁻¹sr⁻¹MeV⁻¹ at E = 2.05 MeV
- 1 in 100 year flux is a factor of 1.1 to 1.4 times larger than the 1 in 10 year flux
- 1 in N year fluxes at GEO a factor of 3-4 less than at equatorial MEO

1 in 10 Year Fluxes as a function of L* and Energy

- Results can be used to determine the 1 in 10 year electron flux as a function of energy and L*
- Results cover the range
 - 0.69 2.05 MeV
 - 4.0 < L* < 6.75

Summary

- The 1 in N year fluxes and plate currents computed as part of this work package serve as benchmarks against which to compare other space weather events in GEO, MEO and LEO
- They can be used to assess how hostile the space weather environment might become in a worst-case scenario.
- The results may also be used to compute the return period of any given space weather event to determine if the event was particularly extreme for any given location.

Acknowledgements

• The research leading to these results has received funding from the European Union Seventh Framework Programme under grant agreements number 606716 (SPACESTORM) and is also supported in part by the UK Natural Environment Research Council

ILMATIETEEN LAITOS Meteorologiska institutet Finnish meteorological institute

