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Earth’s Radiation Belts

• Our critical infrastructure 

extends to 6.6 Earth radii

• Over 1300 satellites in Earth 

orbit 

• Most are exposed to relativistic 

electrons (E > 1 MeV) in the 

Earth’s radiation belts

• These so-called “killer 

electrons” are a major cause of 

radiation damage



Radiation Damage

• Relativistic electrons can 

penetrate satellite surfaces and 

embed themselves in insulating 

materials

• The charge can build up and 

eventually exceed breakdown 

levels

• The subsequent discharge can 

damage components and even 

destroy a satellite

satellite surface

insulating material
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Space Weather Effects on Satellites

• The impacts of space weather on 

satellite operations range from 

momentary interruptions of 

service to total loss of capabilities 

when a satellite fails

• During a major storm in 2003

• 47 satellites experienced 

anomalies

• more than 10 satellites were 

out of action for more than 1 

day

• the US$ 640 M Midori-2 

satellite was a complete loss
Artists impression of Midori-2 satellite



• Europe is investing heavily in the 

Galileo global navigation satellite 

system

• There are currently 14 operational 

satellites in the developing 

constellation

• When fully operational in 2020 it 

will consist of 30 satellites with 10 

satellites spread in three different 

orbital planes

Motivation



Motivation

• Satellites in the Galileo 

constellation 

• operate in circular orbits

• altitude: 23,300 km

• inclination: 56o

• pass through the heart of 

the outer radiation belt 

• may be exposed to large 

fluxes of relativistic 

electrons



• Satellite operators and engineers require realistic estimates of the 

highest charging currents that are likely to be encountered in MEO 

• to assess the impact of an extreme event

• to improve resilience of future satellites

• Satellite insurers require this information

• to ensure satellite operators are doing all they can to reduce risk 

• to help them evaluate realistic disaster scenarios

Motivation



• The objective of this study is to calculate the 1 in 10, 1 in 50, and 1 in 

100 year internal charging currents in medium Earth orbit

Objective



Giove-A

• Study uses data from ESA’s 

Giove-A satellite

• This satellite was the first test 

satellite of the Galileo GNSS 

• It was launched in December 

2005 to

• test technology in orbit

• claim frequencies 

allocated to Galileo credit: ESA

Orbital Parameters
Altitude:  23,300 km
Inclination:   56o

Period: 14 hours



Giove-A

• Giove-A was initially designed 

with a lifetime of 27 months

• This lifetime has been greatly 

exceeded and the satellite 

continues to acquire good data

• For this study we use data from 

the SURF internal charging 

monitor

• Use data from 29th December 

2005 to 5th January 2016
credit: ESA

Orbital Parameters
Altitude:  23,300 km
Inclination:   56o

Period: 14 hours



SURF Internal Charging Monitor

• SURF is designed to measure the 

small currents which penetrate 

spacecraft surfaces and cause 

internal charging

• consists of three aluminium 

collector plates mounted in a 

stack 

• each plate is connected to an 

electrometer to measure the 

deposited current

• measured currents lie in the 

range of fAcm-2 to pAcm-2



• The top plate is 0.5 mm thick and lies 

underneath 0.5 mm Al-equivalent shielding

• responds to electrons above 500 keV

with a peak response between 700 

and 900 keV

SURF Internal Charging Monitor



• The top plate is 0.5 mm thick and lies 

underneath 0.5 mm Al-equivalent shielding

• responds to electrons above 500 keV

with a peak response between 700 

and 900 keV

• The middle plate is 0.5 mm thick and lies 

underneath 1.0 mm Al-equivalent shielding

• responds to electrons above 700 keV

with a peak response between 1.1 and 

1.4 MeV

SURF Internal Charging Monitor



• The top plate is 0.5 mm thick and lies 

underneath 0.5 mm Al-equivalent shielding

• responds to electrons above 500 keV

with a peak response between 700 

and 900 keV

• The middle plate is 0.5 mm thick and lies 

underneath 1.0 mm Al-equivalent shielding

• responds to electrons above 700 keV

with a peak response between 1.1 and 

1.4 MeV

• The bottom plate is 1.0 mm thick and lies 

underneath 1.5 mm Al-equivalent shielding

• responds to electrons above 1.1 MeV 

with a peak response between 1.6 and 

2.1 MeV

SURF Internal Charging Monitor



• The SURF plate current data were provided at a 5 minute time 

resolution 

• For each time step we calculated L* using the Olson-Pfitzer quiet 

time model and the IGRF field at the beginning of the appropriate 

year

SURF Database



• We determined the daily-averaged plate currents as a function of L* 

for 10 evenly spaced values of L* from L*=4.75 to L* = 7.00

• ~3025 good quality data points at each L* corresponding to 8.3 

years of operational data

Data Analysis



• We determined the daily-averaged plate currents as a function of L* 

for 10 evenly spaced values of L* from L*=4.75 to L* = 7.00

• ~3025 good quality data points at each L* corresponding to 8.3 

years of operational data

• To compare with engineering standards we also calculated the daily 

averaged plate currents averaged along the orbit path

• to ensure good coverage used days with > 80% coverage

• 2223 good quality data points corresponding to 6.1 years of 

operational data

Data Analysis



Summary Plot

• To inspect the data we 

produced annual summary 

plots 

• We plotted the SURF data at 4 

representative L* values 

together with the GOES          

E > 2 MeV fluxes

• Data confirmed to be very 

clean and no outliers were 

found 



• Top plate currents cover two 

orders of magnitude ranging from 

0.005 to 1.2 pAcm-2

• Largest observed top plate 

currents range from 0.04 pAcm-2

at L* = 7 to 1.2 pAcm-2 at            

L* = 4.75

Exceedance Probability



• Middle plate currents cover two 

orders of magnitude ranging from 

0.001 to 0.43 pAcm-2

• Largest observed middle plate 

currents range from 0.01 pAcm-2

at L* = 7 to 0.43 pAcm-2 at            

L* = 4.75

Exceedance Probability



• Bottom plate currents cover two 

orders of magnitude ranging from 

0.004 to 0.48 pAcm-2

• Largest observed bottom plate 

currents range from 0.02 pAcm-2

at L* = 7 to 0.48 pAcm-2 at            

L* = 4.75

Exceedance Probability



• Two main methods for extreme value analysis

• block maxima

• exceedances over a high threshold

• The exceedances over the threshold approach makes the best use of 

the available data and has been successfully applied in many fields

• For this approach the appropriate distribution function is the 

Generalised Pareto Distribution (GPD)

Extreme Value Analysis



• Values can exceed the threshold on consecutive days

• The statistical analysis requires that the individual exceedances are 

independent

• Technique to deal with this is known as declustering

Declustering



• Use an empirical rule to define clusters of exceedances

• Consider cluster to be active until 3 consecutive daily averages fall 

below the threshold 

• Identify the maximum excess in each cluster

• Fit the GPD to the cluster maxima

Declustering



• The GPD may be written in the form

G(x-u) = 1 – (1+ ξ(x-u)/σ)-1/ξ

where: x are the cluster maxima above the chosen threshold u

ξ is the shape parameter which controls the behaviour of the tail

σ is the scale parameter which determines the dispersion or 

spread of the distribution

• We fit the GPD to the tail of the distribution using maximum likelihood 

estimation 

Generalised Pareto Distribution



• We may assess the quality of a fitted GPD model by comparing the 

empirical and modelled probabilities and quantiles

• If the GPD model is a good method for modelling the exceeedances

then both the probability and quantile plots should be linear

Quality Checks



• The probability and quantile plots are both approximately linear showing 

that the GPD is a good method for modelling the exceedances

P[X>x|X>u] Exceedances

Probability and Quantile Plots



• Our major objective is to determine the 1 in N year space weather 

event

• The plate current that is exceeded on average once every N years can 

be expressed in terms of the fitted parameters σ and ξ as:

xN = u + (σ/ξ)(Nndnc/ntot)
ξ – 1))

where nd is the number of data points in a given year,  nc is the number 

of cluster maxima and ntot is the total number of data points

• A plot of xN against N is known as a return level plot

Determination of the 1 in N Year Event



Top Plate: Return Level Plot at L* = 4.75



• 1 in 10 Year plate current

• 1.0 pAcm-2

Top Plate: Return Level Plot at L* = 4.75



• 1 in 10 Year plate current

• 1.0 pAcm-2

• 1 in 100 Year plate current

• 1.5 pAcm-2

Top Plate: Return Level Plot at L* = 4.75



• 1 in 10 year top plate current

• increases with decreasing L*

• ranges from 0.03 pAcm-2 at 

L*= 7.0 to 1.0 pAcm-2 at        

L* = 4.75

• 1 in 100 year top plate current 

• lies in the range 0.04 to      

1.5 pAcm-2 

• is generally a factor of         

1.2 – 1.8 times larger than the 

1 in 10 year event

Top Plate: 1 in N Year Event Levels



• 1 in 10 year middle plate current

• increases with decreasing L*

• ranges from 0.01 pAcm-2 at 

L*= 7.0 to 0.4 pAcm-2 at        

L* = 4.75

• 1 in 100 year middle plate current 

• lies in the range 0.015 to    

0.8 pAcm-2 

• is generally a factor of         

1.2 – 2.7 times larger than the 

1 in 10 year event

Middle Plate: 1 in N Year Event Levels



• 1 in 10 year bottom plate current

• increases with decreasing L*

• ranges from 0.01 pAcm-2 at 

L*= 7.0 to 0.4 pAcm-2 at        

L* = 4.75

• 1 in 100 year bottom plate current 

• lies in the range 0.03 to       

0.5 pAcm-2 

• is generally a factor of         

1.4 – 2.6 times larger than the 

1 in 10 year event

Bottom Plate: 1 in N Year Event Levels



Comparison with Engineering Design Standards

• Both NASA and the European Cooperation for Space Standardization 

(ECSS) have guidelines on charging current

• a maximum average current of 0.1 pAcm-2 over a 24 hour period is 

commonly adopted

• For dielectrics operating at temperatures less than 25oC the ECSS have 

adopted a threshold of 0.02 pAcm-2

• For comparison with engineering design standards we repeated the 

analysis using daily-averaged plate currents over the entire orbit path



Daily-Averaged Top Plate Currents       

Averaged Along Orbit Path

• Top plate currents cover just 

under two orders of magnitude 

ranging from 0.003 to 0.2 pAcm-2

• Lower design threshold is 

exceeded on 1045 days (47% of 

days)

• Upper design threshold is 

exceeded on 60 days (2.7% of 

days)



• Middle plate currents cover two 

orders of magnitude ranging 

from 0.001 to 0.1 pAcm-2

• Lower design threshold is 

exceeded on 222 days (10% of 

days)

• Upper design threshold is 

exceeded on 3 days (0.1% of 

days)

Daily-Averaged Middle Plate Currents       

Averaged Along Orbit Path



• Bottom plate currents cover just 

under two orders of magnitude 

ranging from 0.002 to 0.1 pAcm-2

• Lower design threshold is 

exceeded on 149 days (6.7% of 

days)

• Upper design threshold is 

exceeded on 3 days (0.1% of 

days) 

Daily-Averaged Bottom Plate Currents       

Averaged Along Orbit Path



• We also conducted an extreme 

value analysis of the daily-

averaged plate currents averaged 

along the orbit path

• The 1 in 10 year top plate current 

is a factor of 2.1 times the upper 

design threshold

• The 1 in 10 year middle and 

bottom plate currents are equal to 

the upper design threshold

1 in N Year Events Averaged Along Orbit Path

Plate 1 in 10 year 
current

(pAcm-2)

1 in 100 year 
current

(pAcm-2)

Top 0.21 0.24

Middle 0.1 0.14

Bottom 0.1 0.16



Satellite Anomalies

• There has been a significant  

increase in satellite anomalies 

at GEO thought to be due to 

IESD in the second half of 

2015 [D. Pitchford, private 

communication]

• Overall 19 satellite anomalies 

at GEO were identified in the 

first 160 days and 40 in the 

next 160 days



Satellite Anomalies

• The GOES E > 2 MeV flux 

and the SURF plate data at  

L* = 6.0 can be used to 

investigate the relationship 

between the satellite 

environment and satellite 

anomalies

• Days with one or two 

anomalies thought to be due 

to IESD are marked as purple 

and green asterisks 

respectively

• Most, but not all, anomalies 

are associated with high 

fluxes of relativistic electrons 

and large plate currents



Conclusions

• We have determined the 1 in 10, 1 in 50 and 1 in 100 year plate 

currents as a function of L* and along the orbit path

• The 1 in 10 year top, middle and bottom plate currents maximise at L* = 

4.75 and are determined to be 1.0, 0.43 and 0.48 pAcm-2 respectively

• Averaged along the orbit path the 1 in 10 year top, middle and bottom 

plate currents are 0.21, 0.1 and 0.1 pAcm-2 respectively



Conclusions

• The 1 in N year plate currents serve as “yardsticks” or “benchmarks” to 

compare against current or previous space weather conditions

• The results may also be used to compute the return period of any given 

space weather event as a function of plate current and L* to determine if 

the event was particularly extreme at any given plate current or location.
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