

Recreating the state of the radiation belts for the last 30 years

Sarah Glauert, Richard Horne, Nigel Meredith

British Antarctic Survey, Cambridge, UK sagl@bas.ac.uk

1. Introduction

Medium Earth Orbit (MEO) is becoming increasingly important

- Galileo, GPS, O3B
- Electric orbit raising
- Limited data on high-energy electrons at MEO
- No data set covers a whole solar cycle

2. The BAS Radiation Belt Model (BAS-RBM)

Physics-based model, includes:

- Transport across the radiation belts
- Interactions with electromagnetic waves
 - lower band, upper band and low-frequency chorus —
- **EMIC** waves _
- plasmaspheric hiss and lightning-generated whistlers —
- Collisions between the electrons and the atmosphere \bullet
- Losses to the magnetopause

 $\frac{\partial f}{\partial t} = \left. \frac{1}{g(\alpha)} \frac{\partial}{\partial \alpha} \right|_{E,L} g(\alpha) \left(D_{\alpha \alpha} \left. \frac{\partial f}{\partial \alpha} \right|_{E,L} + D_{\alpha E} \left. \frac{\partial f}{\partial E} \right|_{\alpha,L} \right)$

 $A(E) = (E + E_0) (E(E + 2E_0))^{1/2}$

I(800) - I(2000)

1200

3. Outer boundary condition

Need a data set that covers 30 years

• GOES > 2MeV electron flux

GOES provides:

- Integral flux

3a. Map to fixed L*

Statistical Asynchronous Regression [O'Brien at al., 2001]

- Determines the relationship between two time varying quantities, without the need for simultaneous measurements of both quantities
- Finds a function that maps the flux measurement at any MLT, to the flux that would be measured by

3b. Defining the spectrum

GOES provides one integral energy flux - model needs spectrum (~200 keV \leq E \leq ~30 MeV)

Use GOES 15 MAGED to define spectra for use with all GOES spacecraft

- Differential flux at 150, 275 and 475 keV from MAGED
- Estimate differential flux from >800keV and >2MeV flux: $J(1265 \ keV) = 2$

- At GEO varying L*
- Only one energy

Model requires:

- **Differential flux**
- At fixed L*
- A range of energies

Need to

- a) Map to fixed L* to remove diurnal variation
- Approximate differential energy b) spectrum from one integral flux measurement

the same instrument at a chosen local time.

Procedure

-2s_isr

03 Nov

2012

- Separate mappings for each GOES spacecraft
- Average GOES >2 MeV flux into 2 hour MLT bins

Example: November 2011 – GOES 15

08 Nov

2012

- - Map flux to dawn and dusk and then average

- Calculate MLT & Kp dependent corrections
- Calculate mappings to both dawn and dusk

13 Nov

2012

- Spectrum shape depends on activity
- Fit kappa distribution to phase-space density
- Get differential and integral flux spectra

Spectra used on outer boundary

Comparison of fitted spectra and data May 2011

NARCOCOC

28 Nov 2012

23 Nov 2012

18 Nov

2012

4. Evaluation using GIOVE-B data

Galileo In-Orbit Validation Element-B (GIOVE-B) ~4 years of data (May 2008 – July 2012)

Standard Radiation Environment Monitor (SREM), [Evans et al., 2008]. TC1 channel E >2 MeV TC3 channel E >800 keV.

Use response functions to convert model output to SREM count rates Giove-B response functions not available - use Rosetta response functions

 $SS = 1 - \frac{\sum_{1}^{N} (X_{i} - Y_{i})^{2}}{\sum_{1}^{N} (X_{i} - \overline{X})^{2}}$

Evaluate simulation using skill scores

Year	TC1 at L*=5
2000	0 70

5. Conclusions

- Simulated the radiation belts between $L^* = 2 6$ for the last 30 years
 - New method of deriving boundary conditions from GOES data —
- First long term simulation of the radiation belts (we think!) —
- Considerable long and short-term variation throughout the belts ${\color{black}\bullet}$
 - Solar cycle variations are clearly visible —
 - Fast solar wind streams in the declining phase produce more intense fluxes throughout the belts
 - Low fluxes at start of solar cycle
- Results compared with the count rates from SREM on the GIOVE-B
- Annual skill score usually exceeds 0.5, often exceeds 0.7. —

Comparison of model and GIOVE-B data

Flux spectrum along a Galileo-type orbit for 30 years will be available on the SPACESTORM website by end March 2017

Resource for satellite designers, operators and insurers

Acknowledgement

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement 606716 (SPACESTORM)