

Solar Wind Control of Plasma Sheet Thermal Electrons at r = 6-11Re: Empirical Model

S. Dubyagin¹, N. Ganushkina^{1,2}, A. Runov³

(1) Finnish Meteorological Institute, (2) University of Michigan, (3) University of California, Los-Angeles

The research leading to these results was partly funded by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No 606716 SPACESTORM

ISROSES-III, Golden Sands, Bulgaria, 11th-16th September 2016

Solar Wind Control of Plasma Sheet Thermal Electrons at r = 6-11Re: Empirical Model

S. Dubyagin¹, N. Ganushkina^{1,2}, A. Runov³

(1) Finnish Meteorological Institute, (2) University of Michigan,(3) University of California, Los-Angeles

Acknowledgements

The research leading to these results was partly funded by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No 606716 SPACESTORM and by the European Union's Horizon 2020 research and innovation program under grant agreement No 637302 PROGRESS

Motivation

Multiple simulations of the inner magnetosphere require the boundary condition set between GEO and R ~10 Re [*Chen et al., 1994, Jordanova et al., 1996, Fok et al, 2001, Ebihara et al., 2005, Liemohn et al., 2006, Ganushkina at el., 2005, Wolf et al., 1991, Sazykin 2000, Toffoletto et al., 2003*]

Multiple authors addressed the topic of the plasma parameters dependence on the solar wind conditions [*Terasawa et al., 1997, Borovsky et al., 1998, Wing and Newell 2002, Wang et al., 2006, 2007, 2010*]. One the other hand, there are few analytical equations which could be used as a boundary conditions [*Tsyganenko and Mukai 2003, Sergeev et al., 2015*]

We present the empirical model of the electron density and temperature in the near-Earth plasma sheet. The work is done using THEMIS plasma and magnetic field measurements

Data: THEMIS A, D, E probes

300 keV

Plasma measurements:

> 25 keV

SST

ESA electrons: 30eV - 30 keV ions: 30eV - 25 keV

SST low energy limit increases with mission lifetime

Plasma moments are computed from combined distribution functions E = 30 eV - 300 keV (ESA + SST) ESA - SST Energy gap is interpolated

Magnetic field measurements:

Flux Gate Magnetometer

Solar wind plasma parameters and IMF:

OMNI database, 1-min res.

Depending on detectors modes the data are available:

~1.6 min resolution (accumulated during one spin period, 3 sec) **Auxiliary data set** Spin resolution (3 sec), averaged over 1.6 min; **Primary data set:**

Quiet periods, MLT 18-24, -Cold component

cm⁻³

Primary data set $\overline{\bigcirc}$ ~63,000 records (1.6 min) $\overline{\geq}$ After removal of bad points~45,0001264 1h intervals

~1/3 of data was excluded!

Auxiliary data set (after cleaning) ~12,000 1371 1h intervals

years	2007	2008	2009	2010	2011	2012	2013
# Primary	0	0	0	7,475	11,347	12,693	13,486
# Auxiliary	1,992	583	38	1,688	2,033	2,520	3,317

Parameterization of Te, Ne dependence on solar wind parameters

Correlation between plasma sheet density and solar wind proton density

NEAR-EARTH

Correlation between plasma sheet **density** and **IMF southward component**

Correlation between plasma sheet density and IMF southward component

NEAR-EARTH

Correlation between plasma sheet **electron temperature** and **IMF southward component**

Correlation between plasma sheet **electron temperature** and **IMF southward component**

Analytical models:

$$P^{PS} = G_0(r,\phi) + \sum_j G_j(r,\phi) \cdot P_j^{SW}$$

$$G(r,\phi) = c_1 + c_2 r + c_3 \phi + c_4 \phi^2 + c_5 r \phi + c_6 r \phi^2$$

18 coefficients for N_e model, 24 coefficients for T_e model

Correlation coefficients between the data and model predictionsDensity model:0.83Temperature model:0.73Reference coefficients

Simplification

We seek for a minimal set of terms which still provide good model quality

After this set is found, we introduce non-linear dependence

Resulting correlation coefficients are:						
Density model:	0.82	7 coefficients				
Temperature model:	0.75	9 coefficients				

Final model equations

Electron density model: 7 coefficients

$$N_{e} = 1.23 - 1.01 \cdot r + 0.874 \cdot r\phi^{2} - 0.82 \cdot \phi^{2}$$
positive $\rightarrow (+0.392) N_{SW}$
positive $\rightarrow (+0.521 - 0.474 \cdot r) \cdot B_{S}$
Electron temperature model: 9 coefficients

$$T_{e} = [-0.0215 - 0.426 \cdot \phi$$
positive $\rightarrow (+0.874) \cdot V_{SW}$
positive $\rightarrow (+0.587 - 0.538 \cdot r\phi^{2}) \cdot B_{S}^{0.32}$
negative $\rightarrow (-0.489 \cdot r) \cdot B_{N}^{0.36}]^{2.31}$

$$r = R/10 \text{Re}$$

$$\phi = \arctan(-Y/X)/90^{\circ}$$

$$N_{SW} = \langle N_{SW} \rangle / 10cm^{-3}$$

$$V_{SW} = \langle V_{SW} \rangle / 400 km/s$$

$$B_{S} = \langle B_{S}^{IMF} \rangle / 2nT$$

$$B_{N} = \langle B_{N}^{IMF} \rangle / 2nT$$

Conclusions

□ The empirical models of the plasma sheet T_e and N_e at r=6-11Re have been constructed.

□ The models are based on ~ 400 hours of THEMIS measurements during geomagnetic storms

□ For given location in the equatorial plane, the models output the plasma sheet T_e and N_e as a function of time-integrated solar wind and IMF parameters.

❑ The models show very good performance
 Density: C.C.=0.82; RMS = 0.23 cm⁻³
 Temperature: C.C.=0.75; RMS = 2.6 keV

For the model description see *Dubyagin et al.*, JGR, 2016 The model codes and subroutines for the input parameter computation are given in supplemental materials.