

Modelling the diffusion due to waveparticle interactions in the radiation belts

Sarah Glauert, Richard Horne, Nigel Meredith Toby Kersten

British Antarctic Survey, Cambridge, UK

The research leading to these results has received funding from the European Union Seventh Framework Programme under grant agreement and 606716 (SPACESTORM)

Antarctic Survey

International Workshop on Energetic Particle Processes of the Near Earth Space (IWEPPNES), Paris, 18th May 2015. ENVIRONMENT RESEARCH COUNCIL

Background

Diffusion equation for phase-space density (*f*) in pitch-angle (α), energy (*E*) and L^{*} (*L*) coordinates

Background

BAS-RBM solves a diffusion equation for phase-space density (*f*) in pitch-angle (α), energy (*E*) and L^{*} (*L*) coordinates

$$\frac{\partial f}{\partial t} = L^2 \frac{\partial}{\partial L} \left(\frac{D_{LL}}{L^2} \frac{\partial f}{\partial L} \right) \bigg|_{\mu J} + \frac{1}{g(\alpha)} \frac{\partial}{\partial \alpha} \left(g(\alpha) \left(D_{\alpha \alpha} \frac{\partial f}{\partial \alpha} + D_{\alpha E} \frac{\partial f}{\partial E} \right) \right) \bigg|_{\alpha, EL}$$

$$+\frac{1}{A(E)}\frac{\partial}{\partial E}\left(A(E)\left(D_{E\alpha}\frac{\partial f}{\partial \alpha}+D_{EE}\frac{\partial f}{\partial E}\right)\right)\Big|_{\alpha,EL}-\frac{f}{\tau(\alpha,E,L)}$$

$$A(E) = (E + E_0)(E + 2E_0)^{\frac{1}{2}} E^{\frac{1}{2}}$$

$$g(\alpha) = \sin \alpha \cos \alpha (1.30 - 0.56 \sin \alpha)$$

British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

How do you calculate the diffusion rates?

Use a code like PADIE [Glauert & Horne, 2005]

- Gyro-resonant wave-particle interactions
- Describe the wave
 - Frequency distribution
 - Wave normal angle distribution
 - Distribution of the waves in space
- Location
 - Plasma frequency
 - Magnetic field
- Particle type (electron or ion) and energy
- Number of resonances

local diffusion coefficients $D_{\alpha\alpha}$, $D_{\alpha E}$ and D_{EE}

Drift-averaged diffusion rates

Average the local diffusion coefficients over one bounce \rightarrow Bounce average diffusion coefficients $\langle D_{\alpha\alpha} \rangle$, $\langle D_{\alpha E} \rangle$ and $\langle D_{EE} \rangle$

Average around a drift path

 \rightarrow drift and bounce averaged coefficients used in the model

 $<\!\!D_{\alpha\alpha}\!\!>^d$, $<\!\!D_{\alpha E}\!\!>^d$ and $<\!\!D_{EE}\!\!>^d$

Repeat for

- multiple energies
- multiple L*
- varying geomagnetic conditions
 - Plasma frequency
 - Wave parameters

Chorus diffusion model

Model from EU-FP7 project SPACECAST [Horne et al., 2013]

- Lower (0.1 $\rm f_{ce} \leq f < 0.5~f_{ce})$ and upper 0.5 $\rm f_{ce} < f \leq 0.9~f_{ce}$ band chorus
- Parameterised geomagnetic activity by Kp and AE
- Data from 7 satellites
- Wave spectra determined for
 - 2 \leq L* \leq 10 in steps of 0.5 R_e
 - 5 levels geomagnetic activity
 - 3 hour MLT bins
 - 6° latitude bins $0 \le |\lambda| \le 60^{\circ}$
- Wave normal angle distribution peak at 0°, width of tan 30°
- 10 keV ≤ Energy ≤ 30 MeV
- f_{pe}/f_{ce} from new model based on CRRES and THEMIS data

 f_{ce} = local gyro-frequency

Chorus diffusion model

- Diffusion increases with increasing activity
- Significant energy diffusion

Plasmaspheric hiss diffusion model

Hiss model based on CRRES data [Glauert et al., 2014]

- 100 Hz to 5 kHz includes lightning generated whistlers
- Wave spectra determined for
 - 2 \leq L* \leq 6.5 in steps of 0.5 R_e
 - 3 levels geomagnetic activity
 - Average spectra over all MLT for each L*
 - Fit 3 Gaussian distributions to cover whole frequency range [Meredith et al., 2007]

Wave-normal angle model for hiss

Peak wave-normal angle varies with latitude

- Field aligned near equator, oblique at higher latitudes [Bortnik et al., 2008]
- HOTRAY ray tracing code estimates variation with latitude

 at each L for 3 frequencies, (300Hz, 700Hz and 2kHz)
- Width of the wave-normal angle distribution fixed at tan 80°

L = 3 Distance Z vs distance X

Diffusion due to hiss and LGW

SPACE

3d simulations

- Hiss model reproduces inner edge of outer belt
- Chorus provides acceleration

Decay rates

90° equatorial flux for 976 keV electrons

Improvements to the chorus model

Two recent results:

- Significant wave power below 0.1 f_{ce} at higher latitudes [Meredith et al., 2014]
 - Not included in previous chorus models
- 2. Wave normal angle distribution width $\delta X \sim tan15^{\circ}$ [Santolik et al., 2014]

Low frequency chorus

100 nT ≤ AE < 200nT

Simulation with low frequency chorus

Increased loss

Wave normal angle distribution

Recalculated chorus diffusion matrix (again)

• Width - tan 15°

Simulation with wna width 15°

Small increase in acceleration

Increase is more significant at higher energies ~4 MeV

Improvements to the hiss model

- Have to include a plasmapause model
- Have one spectra for all MLT, scaled by wave power
- Agapitov et al. [2013] suggest $\delta X \sim \tan 20^{\circ}$
 - Our model has $\delta X \sim \tan 80^{\circ}$

Toby is working on a new model ...

- Data from 7 satellites
- New method of distinguishing hiss from chorus
- 1 hour resolution in MLT
- Calculate wave spectra for each MLT and L*
- Update wave-normal angle model
- 6 levels of geomagnetic activity

Electromagnetic ion cyclotron (EMIC) waves

Diffusion matrix for EMIC waves

- SPACECAST and MAARBLE projects [Kersten et al., 2014]
- Averaged properties of the waves
- CRRES data
- Hydrogen and helium band waves

Pitch-angle diffusion rates for EMIC waves

British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

Effect of EMIC waves

Do you lose electrons near 90°?

British

NATURAL ENVIRONMENT RESEARCH COUNCIL

Acknowledgements

The Spacestorm project is funded by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no 606716.

Combined EMIC and Chorus diffusion $L^* = 4.5$

