

Global Distribution of EMIC Waves – CRRES Results

N. P. Meredith (1), R. B. Horne (1), T. Kersten (1)

B. J. Fraser (2) and R. Grew (2)

(1) British Antarctic Survey;(2) University of Newcastle, Australia

The research leading to these results was partly funded by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No 606716 SPACESTORM

IMC III Workshop, UCLA 23rd - 27th March, 2015

British Antarctic Survey ONERA

Global Distribution of EMIC Waves – CRRES Results

N. P. Meredith¹, R. B. Horne¹, T. Kersten¹ B. J. Fraser² and R. Grew²

> ¹British Antarctic Survey; ²University of Newcastle, Australia

IMC III Workshop, UCLA 23rd - 27th March, 2015

EMIC Waves

- EMIC waves are low frequency waves (0.1-5 Hz) which are mainly excited in two bands below the proton gyrofrequency:
 - hydrogen band waves
 - helium band waves
- These waves may be an important loss process for the radiation belts
- To assess their role in radiation belt dynamics we have produced a database of EMIC waves

EMIC Waves

- Data on EMIC waves obtained from spectral analysis of measurements from the CRRES Fluxgate Magnetometer Instrument
- Wave spectrograms in the frequency range 0-8 Hz provided at a 25 s time resolution throughout the CRRES mission by Brian Fraser (U. Newcastle)
- Total of 796,523 useable spectral profiles

Gaussian Fits

- We fitted Gaussian profiles to the wave spectra in the hydrogen and helium bands
- To avoid fitting to spurious peaks we restricted the fitting to the 830 EMIC wave event intervals identified by Fraser and Nguyen [2001]
- The EMIC wave intervals covered 96 hours of the analysed 7248 hours, equivalent to 1.33 % of the total observations

Gaussian Fits

L* UT MLT $λ_m$ 5.17 15:30 14:17 -10.9

- For each fit we recorded:
 - peak intensity I₀
 - peak frequency, f₀
 - spectral width, df
 - the integrated intensity, I, over the wave band

EMIC Wave Database

- We constructed two matrices, one for the helium and one for the hydrogen band waves.
- Each matrix contains the following information for each spectral profile:
 - orbit number, UT
 - AE index, Dst index, & Kp index
 - L*, MLT, MLAT
 - plasma frequency
 - local and equatorial helium ion gyrofrequency
 - details of the Gaussian fit I, I_0 , f_0 , df when fit possible

Global Model

- We conducted a statistical analysis of the occurrence of helium and hydrogen band EMIC waves with intensities greater than 0.1 and 1 nT² as a function of spatial location and geomagnetic activity
- We split the magnetic activity into three levels which we define as
 - Quiet AE < 100 nT
 - Moderate 100 < AE < 300 nT
 - Active AE > 300 nT

Helium Band EMIC Waves with $B_w^2 > 0.1 \text{ nT}^2$

 Helium band EMIC waves most prevalent during active conditions in the afternoon sector from L*=4-7. Here intensities exceed 0.1 nT² for 2.6% of the time.

Helium Band EMIC Waves with $B_w^2 > 1 nT^2$

 Helium band EMIC waves exceed 1 nT² approximately 1% of the time in the afternoon sector from L* = 4-7 during active conditions

Hydrogen Band EMIC Waves with $B_w^2 > 0.1 \text{ nT}^2$

 Hydrogen band EMIC waves most prevalent during active conditions in the afternoon sector from L*=4-7. Here intensities exceed 0.1 nT² for 0.5% of the time

Hydrogen Band EMIC Waves with $B_w^2 > 1 nT^2$

 Hydrogen band EMIC waves exceed 1 nT² approximately 0.1% of the time in the afternoon sector from L* = 4-7 during active conditions

- Intensities cover 4 orders of magnitude
- Average intensity of an EMIC wave event is of the order 1 nT²
- Time averaged intensity is about a factor of 30 lower

- Bulk of events have peak frequencies between 0.1 and 0.2f_{cp}
- Average peak frequency is 0.15f_{cp} and doesn't vary significantly with L*

- Bulk of events have spectral widths between 0.05 and 0.1 f_{cp}
- Average spectral width is 0.03f_{cp}

 The ratio f_{pe}/f_{ce} is large and typically greater than 10

- Intensities cover 3 orders of magnitude
- Average intensity of an EMIC wave event is of the order 0.5 nT²
- Time averaged intensity is about a factor of 50 lower

- Bulk of events have peak frequencies between 0.3 and 0.6f_{cp}
- Average peak frequency is 0.4f_{cp} and doesn't vary significantly with L*

- Bulk of events have spectral widths between 0.01 and 0.5 f_{cp}
- Average spectral width is 0.05f_{cp}

 The ratio f_{pe}/f_{ce} is large and typically greater than 10

Conclusions

- Helium band EMIC waves with intensities greater than 0.1 nT² are most prevalent during active conditions from $L^* = 4-7$ in the afternoon sector with an average occurrence rate of 2.6%.
- The average intensity of a helium band EMIC wave event is of the order 1 nT² but the time-averaged intensity is a factor of 30 lower.
- The average peak frequency and width of he moderate and strong helium band EMIC waves (I > 0.1 nT²) in the afternoon sector is $0.15f_{cp}$ and $0.03f_{cp}$ respectively

Conclusions

- Hydrogen band EMIC waves with intensities greater than 0.1 nT² are most prevalent during active conditions from L* = 4-7 in the afternoon sector with an average occurrence rate of 1%.
- The average intensity of a hydrogen band EMIC wave event is of the order 0.5 nT² but the time-averaged intensity is a factor of 50 lower.
- The average peak frequency and width of he moderate and strong helium band EMIC waves (I > 0.1 nT²) in the afternoon sector is $0.4f_{cp}$ and $0.06f_{cp}$ respectively

Acknowledgements

 The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreements numbers 262468 (SPACECAST), 284520 (MAARBLE) and 606716 (SPACESTORM) and is also supported in part by the UK Natural Environment Research Council

Diffusion Rates

- Calculated diffusion matrices for hydrogen and helium band EMIC waves
- Pitch angle diffusion becomes significant only at high energies (E > 2 MeV) and low pitch angles (α < ~60°)
- Energy diffusion is insignificant at all energies and pitch angles

Kersten et al., 2004

Global Simulations

- The diffusion matrix has been included into the BAS Radiation Belt Model and the model run for a 100 day period in 1990 during the CRRES mission
- When EMIC waves are included the 6 MeV electron flux at a pitch angle of 45° is reduced, particularly during DOY 285-310

Kersten et al., 2004

Pitch Angle Distributions

- We ran the model to examine the structure of the pitch angle distribution left behind in space
- The results show that the pitch angle distribution is peaked near 90° and that the width of the distribution varies with energy.
- In general higher energies of 6 and 10 MeV have an increasingly narrow distribution, consistent with observations [Usanova et al., 2014]

Kersten et al., 2004

- EMIC waves are effective at scattering electrons for E > 2MeV
- There is no significant energy diffusion
- EMIC waves lead to significant losses at pitch-angles < 60° (for L* > 3.5)
- EMIC waves will result in a peaked particle distribution for $70^{\circ} < \alpha < 90^{\circ}$

Sample Orbit

• Note wide range of variability in intensity covering three orders of magnitude