

Incorporating Wave-Particle Interactions into Global models

Richard B. Horne

British Antarctic Survey

The research leading to these results was partly funded by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No 606716 SPACESTORM

SHIELDS Workshop, Los Alamos, USA, 23 Feb 2015

British Antarctic Survey ENVIRONMENT RESEARCH COUNCIL

onera

Incorporating Wave-Particle Interactions into Global models

Richard B. Horne British Antarctic Survey

SHIELDS Workshop, Los Alamos, USA, 23 Feb 2015

Satellite Orbits and the Earth's Radiation Belts

The Earth's Electron Radiation Belts

- About 1000 satellites in orbit:
 - 420 in geosynchronous orbit GEO
 - 70 in medium Earth orbit MEO

470 in low Earth orbit LEO35 in highly elliptical orbit HEO

• Earth's radiation belts contain very high energy electrons and ions that damage satellites

Satellite Anomalies – Related to Space Weather

- 20th Jan 1994
 - Intelsat 4 and Anik E1 recovered in a few hours
 - Anik E2 Loss of service for 6 months
- 11th January 1997
 - Telstar 401 Total loss Insurance payout \$132m
- 19th May 1998
 - Galaxy IV Total loss Insurance payout \$165m
- 23rd Oct to 6th Nov 2003
 - 47 satellites reported malfunctions 1 total loss
 - 10 satellites loss of service for more than 1 day
- 3rd Aug 2004
 - Galaxy 10R loss of propulsion Insurance payout \$75m
- 5th Apr 2010
 - Galaxy 15 Loss of service for 8 months risk of collision
- 7th March 2012,
 - Sky Terra 1 and Spaceway 3 Safe mode, loss of service for hours days
- Impact of 1 in 100 year event? National Risk Register
 - Estimates vary widely (all space weather US\$0.6 2.6 trillion)

British Antarctic Survey

NATURAL ENVIRONMENT RESEARCH COUNCIL

Spacecraft Damage

- Satellite charging
 - Internal charging MeV electrons
 - Surface charging keV electrons
- Electrostatic discharge
 - Component failure
 - Phantom commands
- Single event effects
 - Corrupt memory circuits
 - Loss of power in solar cells
 - ~ 2% in GaAs/Ge cells SEP event
 - Parts failure
- Cosmic rays
- Solar energetic particle events (SEPs)

- Cumulative radiation dose limits spacecraft lifetime
 - Aging of surface coatings
 - Erosion
 - Reduced thermal resilience

Electron flux variability

• Proba V EPT data

• Pierrard et al. [2014]

BAS Radiation Belt Model

• Fokker-Planck Equation

- Drift & bounce averaged diffusion coefficients D_{LL} , $D_{\alpha\alpha}$, D_{EE} are activity, location and energy dependent
- Details in: Glauert et al. [2014a, b]

Wave-particle Interactions - Challenges

- Wave-particle interactions cause electron acceleration and precipitation (loss)
- Challenges
 - Timescale milliseconds but we need to model days
 - Which waves are most important? (Chorus, Hiss, magnetosonic, EMIC, LO, RX, Z mode, lower hybrid, ECH, transmitters, lightning-whistlers...)
 - How do we capture MLT dependence?
 - Latitude dependence
 - Power spectra
 - Plasma density effects
 - Propagation direction wave normal angle
 - Ion composition effects polarization and propagation
 - Nonlinear effects!! and saturation
 - Relate to substorms
 - Relate to CMEs and fast solar wind magnetopause compressions

Radial Diffusion Coefficients

New Chorus Wave Model

NATURAL ENVIRONMENT RESEARCH COUNCIL

New Chorus Wave Model

- Fitted 3536 power spectra, L* = 1.5 10, lat = 0 – 60, MLT = 0 – 24, 5 activity levels
- Similar fitting of wave data for plasmaspheric hiss

Antarctic Survey

NATURAL ENVIRONMENT RESEARCH COUNCIL

 $k_p < 1$ $1 \le k_p < 2 \ 2 \le k_p < 3 \ 3 \le k_p < 4$ $k_p \ge 4$ 70.0 60.0 (50.0 40.0 a 30.0 a 30.0 20.0 10.0 0.6 0.5 0.4 fm/fce 0.3 0.2 0.1 0.0 0.8 0.6 ôf/Ice 0.4 0.2 0.0 14.0 12.0 10.0 8.0 6.0 4.0 fm (kHz) 2.0 5.0 4.0 ôf (kHz) 3.0 2.0 1.0 0.0 2468 2 4 6 8 L*

Lower band chorus $0^{\circ} < |\lambda_m| < 6^{\circ}$ 03-06 MLT

Chorus Wave Normal Angle

Importance of Wave-Particle Interactions

 90° flux (cm⁻²sr⁻¹s⁻¹keV⁻¹) for 976.keV electrons

Satellite data - Electrons

Radiation Belt from Chorus Alone

- Initial soft electron spectrum (~ 10 keV) along the low energy boundary
- Chorus wave diffusion only
- Kp = 2
- Time delay for higher energies
- Chorus alone can form >2 MeV electron radiation belts
- Glauert et al., JGR [2014]

CRRES EMIC Wave Survey

•

Meredith et al. JGR, [2014]

EMIC diffusion rates $L^* = 4.5$

- Pitch angle diffusion becomes significant only at high energies (E > 3 MeV) and low pitch angles (α < ~60°)
- Energy diffusion is insignificant at all energies and pitch angles

Electron flux: 100 day simulation – 45°

Electron Pitch Angle Distribution

Kersten et al., [2014]

Usanova et al., JGR, [2014]

Conclusions

- Chorus wave acceleration now established but need to consider severe events carefully fpe/fce
- EMIC waves effective loss for E > 2 MeV and signatures in pitch angle distributions
- Magnetopause effective loss in the outer region but how far in?
- Other areas
 - Other waves magnetosonic, nonlinear cf quasilinear
 - Plasmapause and plumes local time dependence on waves
 - Low energy electrons effects on acceleration to higher energies
 - Mag field models
- Space weather forecasting the ultimate test

