

# A New Model of Outer Belt Electrons for Dielectric Internal Charging (MOBE-DIC)

<u>Alex Hands</u><sup>1</sup>, Keith Ryden<sup>1</sup>, Craig Underwood<sup>1</sup>, David Rodgers<sup>2</sup> and Hugh Evans<sup>2</sup>

<sup>1</sup>University of Surrey, Guildford, United Kingdom

<sup>2</sup>European Space Agency, ESTEC, Netherlands

The research leading to these results was partly funded by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No 606716 SPACESTORM

15<sup>th</sup> July 2015, NSREC, Boston

onera













## Outline

- Background
  - Internal Charging
  - Existing Models
  - The SURF Instrument
  - Electron flux determination
- The MOBE-DIC Model
  - Input Data
  - Worst-Case Estimation
  - Outer Belt Extrapolation
  - Implementation







15<sup>th</sup> July 2015, NSREC, Boston



### Internal Charging

- Energetic trapped electrons in Van Allen belts pose a threat to satellites through internal charging of dielectric materials:
- The outer electron belt is extremely dynamic large changes in flux occur over short timescales, driven by coronal holes and coronal mass ejections (CMEs)





## **Existing Environment Models**

- Several models describe the Van Allen belts:
- AE8:
  - Industry standard for decades
  - Static model no flux variability
  - Inadequate for internal charging
- AE9:
  - Successor to AE9
  - Multiple data sources
  - Comprehensive statistics
  - Complex (many input parameters & run options)
- FLUMIC:
  - Worst-case model for internal charging
  - Based primarily on GEO data (not near peak)
  - User-friendly but not up-to-date
- Various others targeted at specific environments/orbits
- Objective of this work: develop new simple model for internal charging worst case environment successor to FLUMIC but based on medium Earth orbit (MEO) data











#### The SURF Detector

 Part of Merlin instrument suite on Giove-A (technology demonstrator for Galileo)

> Radiation-hard computer and power

• Medium Earth Orbit (~23,200 km, 56°)





Three stacked aluminium charge-collecting plates

Launched in 2005

- Direct measure of energetic electrons
- No proton contamination or dead-time



Electrons &

electrostatic charging

#### SURF Data

- Giove-A / Galileo orbit is in the heart of the outer belt
- Perfect location for internal charging currents

MERLIN-GIOVE A: CHARGING CURRENTS DUE TO TRAPPED ELECTRONS

#### First Day:





#### First 6 months:





Merlin Giove A

#### SURF Data



2005 – 2014: 



#### **Electron Flux Determination**

Need flux, rather than current to produce model...



15<sup>th</sup> July 2015, NSREC, Boston

simulations:

Instrument response functions

determined by Monte Carlo

Iterative fit used to derive flux based on assumed exponential spectrum Validated with independent fluxes from other Giove instruments (SREM, Cedex)





## **Worst Case Statistics**

BOSTON NSREC 2015

 Use derived flux time series to create cumulative distribution functions (CDFs) at discrete energies in the range 0.5 – 3 MeV (peak of instrument response)



## Extrapolating to other L-Shells

- Equatorial spectra at L≈4.7 form the basis of the model
- Need to derive profile of L-shell to extrapolate, however...
- L-Shell profile is not stable, e.g.:



SURF on STRV1d (Ryden et al. 2001)

15<sup>th</sup> July 2015, NSREC, Boston







## Extrapolating to other L-Shells (2)

- Our approach is to use high-latitude SURF data
- Inclination of Giove-A orbit means higher L shells only encountered at higher latitudes
- Need to renormalise non-equatorial fluxes:



Assume Vette function (like AE8 and FLUMIC)

[Scaling is (slightly) L-dependent but not energy-dependent]



Fit 'envelope' to renormalised data (at each energy) → Energy-dependent L-Shell profile





## Extrapolating to other L-Shells (3)



• Final (energy-dependent) L-shell profile (3 < L < 8)



FLUMIC function used below L=4.5 (no Giove data)

#### Normalised to L=4.7:

#### Normalised to L=6.6:



(NB slightly modified version used for integral flux)



15<sup>th</sup> July 2015, NSREC, Boston

#### Comparison to GOES data

- Equivalent CDFs constructed from GOES (geostationary) electron flux data
- Compare with MOBE-DIC prediction at L=6.6:

>2 MeV flux adjusted to L=6.6 and for dead-time effects

(Meredith et al., 2015)



Good agreement between MOBE-DIC and GOES at 99% and 100% (slightly worse at 90% due to conservative L-shell envelope)

MOBE-DIC prediction for '100%' (worst case) at GEO for >2 MeV flux is:

#### 2.34 x 10<sup>5</sup> e/cm<sup>2</sup>/s/sr

Theoretical upper limit (Koons et al. 2001)...

2.34 x 10<sup>5</sup> e/cm<sup>2</sup>/s/sr !!





## Comparison to existing models

• Comparison to FLUMIC model (other comparisons in paper):

**Differential Spectra** 





#### Integral Spectra

# MOBE-DIC gives harder spectrum at MEO

Good agreement at GEO (FLUMIC in between 99% & 100% MOBE-DIC level)





## **MOBE-DIC:** Implementation



- MOBE-DIC model is defined by a set of parameters and simple equations
- At present simple spreadsheet implementation:



- Public version available on request (a.hands@surrey.ac.uk)
- To be made available via Spenvis...



0.5

0.6



#### Summary



- Data from Giove (A & B) satellites analysed and cross-correlated
- Spacecraft now graveyarded, SREM and Cedex instruments ceased in 2012
- Merlin instrument (including charging current, proton telescope and RadFETs) continues to collect useful data on Giove-A
- SURF charging currents used to calculate electron flux (free from proton contamination)
- 'Worst case' fluxes derived as function of confidence level at MEO
- Non-equatorial fluxes used to extrapolate to other L-shells
- Implemented in new Model of Outer Belt Electrons for Dielectric Internal Charging (MOBE-DIC) (successor to FLUMIC)
- Aimed at spacecraft engineering community, specifically for concerns over internal charging during enhanced environments
- To be made publically available via Spenvis

