# **The BAS Radiation Belt Model**



Sarah Glauert Richard Horne Nigel Meredith



British Antarctic Survey, Cambridge, UK







Met Office, January 16<sup>th</sup> 2015

### Outline

- How & why the forecasts were developed
- Physical processes in the radiation belts
- The BAS Radiation Belt Model
- The forecasting system
- Forecasts
- Future developments





### Context

- Richard had a key role in showing the importance of wave particle interactions
  - PADIE code quantifies the effect of the interactions
  - BAS Radiation Belt Model (BAS-RBM) developed as research tool
- SPACECAST EU FP7 project
  - Adapt BAS-RBM for forecasting
  - Aimed to get system up and running, then improve forecasts
  - Forecast whole radiation belt, 3 hours ahead, updated every hour
  - Finished February 2014
- SPACESTORM began April 2014
  - Focus on extreme events
  - Forecasting will continue



SPF

Improvements from SPACESTORM will be incorporated into forecasting



British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

### **BAS Space Weather database and forecasts**

- Developed our own Space
  Weather database and website
- Independent from SPACECAST
- Forecasts use BAS-RBM
- Can tailor output for users
  - Orbit and/or energy





# **Electron Radiation Belts**

• High energy electrons (E>500 keV) are trapped by Earth's magnetic field

- Form two torus shaped regions around earth
  - Inner belt 1.2 < L < 2 Fairly stable</p>
  - Outer belt 3 < L < 7 Highly dynamic</li>
  - Slot region lies between the two belts



- Electron flux in the outer belt is extremely variable
  - Can change by several orders of magnitude in hours
  - Real challenge for forecasting



# **Slot Region**

Heynderickx [2014]

#### 1.5 MeV electron flux from CRRES



- Much higher charging environment after March 1991
- O3B satellites will be at 8000 km.

British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

# Motion of trapped electrons

An electron's motion is constrained by the magnetic field

#### 3 parts:

- Orbiting round the field line
- Bouncing along the field line
- Drifting between field lines



Modelling uses a coordinate system related to magnetic field:

- Pitch-angle,  $\alpha$  Angle between the particle's velocity and the magnetic field Determines how far along the field line the particle travels
  - L shell Distance from the centre of the Earth to the equatorial crossing of the field line measured in Earth radii
  - L\* Similar to L shell but takes non-dipole field into account





### **Chorus and Hiss**



- Chorus outside the plasmapause
- Hiss inside the plasmapause

### **Electromagnetic Ion Cyclotron Waves**

- Low frequency waves (0.1-5 Hz)
- Excited in bands below the proton gyrofrequency
- Mainly seen between the proton and helium gyro-frequencies and between the helium and oxygen gyrofreqencies
- Resonate with >2MeV electrons





### **Physical processes in the BAS-RBM**

- Radial transport [Brautigam & Albert, JGR, 2000]
- Upper & lower band whistler mode chorus waves [Horne et al., 2013]
- Plasmaspheric hiss & lightning-generated whistlers [Glauert et al., 2014a]
- EMIC waves [Kersten et al., 2014]
- Plasmapause [O'Brian and Moldwin, 2003]
- Collisions with atmosphere [Abel & Thorne, 1998]



### **BAS Radiation Belt Model**



- Each type of VLF wave can contribute to  $D_{\alpha\alpha}$  and  $D_{EE}$
- Diffusion coefficients depend on activity (Kp or AE), location and energy
- Modelling depends on calculating the correct diffusion coefficients

### **Diffusion models**

• The diffusion coefficients are key to modelling

Energy (keV)

- Use satellite observations to get data on the different waves
  - Variation with L\*, MLT, latitude and geomagnetic activity
- Calculate diffusion coefficients with PADIE code [Glauert and Horne, 2005]
- Include chorus, hiss, lightning-generated whistlers and EMIC waves

#### Chorus diffusion coefficients

Pitch-angle diffusion

D<sub>αα</sub>(days<sup>-1</sup>)





### Role of radial diffusion, hiss and chorus



 $90^{\circ}$  flux (cm<sup>-2</sup>sr<sup>-1</sup>s<sup>-1</sup>keV<sup>-1</sup>) for 976.keV electrons

CRRES data





### **510 keV electrons**







#### **BAS Forecasts**



- Detailed forecast
  - Simulation of last 24 hours
  - Forecast of next 3 hours
- Various energies available
  - 300, 800, 2000 keV
  - ->100, >300, >800, >2000 keV
- Solar wind parameters and magnetic indices

### Fluence



- 24 hour fluence >2MeV
- Related to internal charging
- Produced for GEO, MEO and slot region orbits
- Could be calculated for a specific orbit



### **GOES Fluence**

- Calculate >2 MeV electron flux from GOES data
- Data is unreliable at times
  - Solar proton events
  - Falls below background levels



### **SPACECAST risk index**

|                     | Internal charging | Surface<br>charging |
|---------------------|-------------------|---------------------|
| Geostationary orbit | Low               | Low                 |
| Galileo/GPS orbit   | Medium            | Low                 |
| Slot region         | Low               | Low                 |

Risk index for internal charging

- Based on 24 hour fluence
- Shown for 3 typical orbits
- Could be tailored to a specific spacecraft





# **Ground based data**

- BAS has real time magnetometer data from Halley
- Shows when substorms occur
  - If Halley is in correct location (near MLT midnight)
- Substorms are associated with injections of low energy electrons

### **Possible developments**

- Develop graphics
  - Movies
  - Better versions of fluence for each orbit
  - Customise other plots
- Results for specific spacecraft
- Extend forecasting times
  - Longer forecast for Kp available from SWPC
  - Have to make assumptions about solar wind conditions



### **Possible projects**

- Complete sun to Earth
  - Could extend forecasting time IF you could predict ACE
  - Can't use ENLIL need IMF Bz







### **SPACECAST risk index**

Based on the 24 hour electron fluence (F) for >2MeV electrons The Satellite risk index is set according to

| High   | $F > 5 \times 10^8$                       | electrons cm <sup>-2</sup> sr <sup>-1</sup> |
|--------|-------------------------------------------|---------------------------------------------|
| Medium | 5x10 <sup>7</sup> < F < 5x10 <sup>8</sup> | electrons cm <sup>-2</sup> sr <sup>-1</sup> |
| Low    | F < 5x10 <sup>7</sup>                     | electrons cm <sup>-2</sup> sr <sup>-1</sup> |

Electron fluence: >2MeV electron flux integrated over 24 hours (cm<sup>-2</sup> sr<sup>-1</sup>) Threshold values above which internal charging occurred on satellites at geosynchronous orbit [*Wrenn et al., 2002*].

Wrenn, G. L., D. J. Rodgers, and K. A. Ryden (2002), A solar cycle of spacecraft anomalies due to internal charging, *Ann Geophys.*, *20*, 953–956.





# **All Electric Propulsion Satellites**

- Launch to orbit  $\sim 100 180$  days
- Needs full assessment of variable radiation environment
- SPACESTORM will cover the whole outer belt electron flux, fluence, charging



- 1.5 MeV electrons flux from CRRES
- Much higher charging environment after March 1991
- Charging depends on materials
- Note 8,000 km for O3b satellites



Heynderickx [2014]